
Long-term operating system maintenance

A Linux case study

R. Carbone
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Note

DRDC Valcartier TN 2007-150
January 2008

Long-term operating system maintenance
A Linux case study

Richard Carbone
DRDC Valcartier

Defence R&D Canada – Valcartier
Technical Note
DRDC Valcartier TN 2007-150
January 2008

Principal Author

Richard Carbone

Programmer/Analyst

 Approved by

Stéphan Paradis

Acting Head/Intelligence & Information Section

Norbert Haché (DMSS)

© Her Majesty the Queen as represented by the Minister of National Defence, 2008

© Sa Majesté la Reine, représentée par le ministre de la Défense nationale, 2008

DRDC Valcartier TN 2007-150 i

Abstract

In Operating system hardware reconfiguration: A case study for Linux, it was determined through
experimentation that a Linux-based C2 operating system can successfully undergo a hardware
migration and operating system hardware reconfiguration. The direct benefit of this is the ability
to forgo any new operating system reinstallation in order to support newer hardware by using
mechanisms internal to the operating system that support changes in hardware; this results in a
decreased waiting time for system reaccredidation and redeployment. Since an operating system
can evolve over time, it can accommodate changes in the system’s hardware, thus presenting a
tangible advantage for the Navy as this allows the operating system to be maintained over the
long-term. However, there are complexities involved when maintaining an operating system for
long periods. Therefore, this report serves as an introduction and a simple methodology for
performing system maintenance-related tasks that include upgrading, updating, as well as data
backups and restoration. This report is neither all-inclusive nor a replacement for qualified
system administrators with years of experience. Instead, it can be used as a useful source of
information to provide recommended practices, procedures, and information to help in planning
for long-term system maintenance.

ii DRDC Valcartier TN 2007-150

This page intentionally left blank.

DRDC Valcartier TN 2007-150 iii

Executive summary

Long-term operating system maintenance: A Linux case study
Carbone, R.; DRDC Valcartier TN 2007-150; Defence R&D Canada – Valcartier;
January 2008.

The Canadian Navy’s Directorate of Maritime Ship Support (DMSS), under the auspice of the
Halifax Modernized Command Control System (HMCCS) project requested that DRDC
Valcartier perform an evaluation verifying if the Linux operating system has the ability to
withstand various hardware upgrades over its expected lifetime as the new Halifax-class C2
operating system. This has been examined in Operating system hardware reconfiguration: A
case study for Linux, a study that examined Linux-based hardware migration and operating
system hardware reconfiguration. Prior to this study, other work mandated by the Navy requested
that DRDC Valcartier examine various long-tem support strategies appropriate for the long-term
maintenance of a FOSS-based operating system such as Linux. These findings were laid out in
Life-Cycle Support for Information Systems Based on Free and Open Source Software.

Once the long-term support strategies and necessary reconfiguration capabilities have been
established, an appropriate methodology could be developed for upgrading and updating an
operating system in order to ensure a smooth transition to newer hardware via operating system
hardware reconfiguration or hardware migration. Therefore, this study proposes a methodology
for upgrading and updating an operating system so that installing a newer operating system is not
required in order to support newer hardware. Developing a suitable methodology for maintaining
an operating system so that it can adapt to hardware changes due to periodic hardware changes
was not trivial. Many factors had to be examined and taken into account. It is highly suggested
that the reader have some basic knowledge of Linux, UNIX, and system administration before
reading this study.

This study should not be construed as authoritative but rather as a guide for performing the
necessary system administration related tasks required for system updating and upgrading.
Additionally, a section on backup-related issues has been included so that readers can familiarize
themselves with it prior to undertaking any system maintenance-related task.

iv DRDC Valcartier TN 2007-150

This page intentionally left blank.

DRDC Valcartier TN 2007-150 v

Table of contents

Abstract .. i
Executive summary .. iii
Table of contents ... v
1. Introduction... 1

1.1 Objective ... 1
1.2 Background ... 1

1.2.1 Reports .. 1
1.2.2 Mandates ... 2

1.3 Particulars .. 2
1.3.1 Reader ... 2
1.3.2 Navy .. 3
1.3.3 Report.. 3
1.3.4 Methodology ... 4

2. Technical background... 5
2.1 Objective ... 5
2.2 Reconfigurations and migrations... 5

2.2.1 Background ... 5
2.2.2 Reconfigurations ... 6
2.2.3 Migrations ... 6

2.3 Operating systems ... 7
2.3.1 Background ... 7
2.3.2 Definition .. 7
2.3.3 System dependencies .. 7

2.3.3.1 Interdependencies ... 7
2.3.3.2 System calls .. 8

2.4 Compatibility issues .. 8
2.4.1 Background ... 8
2.4.2 Upgrades ... 9
2.4.3 Updates.. 9
2.4.4 Manual maintenance ... 10
2.4.5 Issues... 11

2.4.5.1 Potential problems .. 11
2.4.5.2 Solutions ... 11
2.4.5.3 Tools ... 12

2.5 Summary ... 13
3. Methodology I - backup and restoration... 15

3.1 Objective ... 15

vi DRDC Valcartier TN 2007-150

3.2 Backup considerations... 15
3.2.1 Plan development .. 15
3.2.2 Tools.. 15
3.2.3 Data-related factors ... 16

3.2.3.1 Data type... 16
3.2.3.2 Special attributes... 16
3.2.3.3 Devices ... 16
3.2.3.4 Raw data ... 16
3.2.3.5 Locked files .. 16
3.2.3.6 Data file volatility... 17
3.2.3.7 Running applications and services.. 17
3.2.3.8 Active operating system ... 19
3.2.3.9 Filesystem availability .. 20

3.2.4 Other backup factors ... 20
3.2.4.1 Media .. 20
3.2.4.2 Lifespan and storage... 21
3.2.4.3 Data security requirements ... 22
3.2.4.4 Size requirements ... 23
3.2.4.5 Data accuracy and relevancy .. 23
3.2.4.6 Speed and bandwidth.. 24
3.2.4.7 Tool summary... 25
3.2.4.8 Resource availability .. 25
3.2.4.9 Backup schedules ... 26

3.3 Filesystem checking for backups and data restoration .. 27
3.3.1 Filesystems.. 27
3.3.2 Issues... 27
3.3.3 Periodic checks ... 27
3.3.4 Repairs .. 28
3.3.5 Scheduling... 28
3.3.6 Filesystem formats .. 29
3.3.7 Bad blocks... 29

3.4 Restoration considerations... 29
3.4.1 Plan development .. 29
3.4.2 Tools.. 30
3.4.3 Various restoration factors .. 30

3.4.3.1 Resource allocation and assurance ... 30
3.4.3.2 Scripts ... 30
3.4.3.3 Data safeguarding ... 31
3.4.3.4 Media testing and device diagnostics ... 31
3.4.3.5 Alternate methods of restoration .. 31
3.4.3.6 Procedure testing .. 32

DRDC Valcartier TN 2007-150 vii

3.4.3.7 System and filesystem availability ... 32
3.4.3.8 Operating system restoration .. 33
3.4.3.9 Users and applications .. 33
3.4.3.10 Databases .. 34
3.4.3.11 File attributes .. 34
3.4.3.12 Security, compression, and networking...................................... 34
3.4.3.13 Multivolume restoration ... 35

3.5 Miscellaneous .. 35
3.5.1 Errors... 35
3.5.2 Testing... 35

3.6 Summary ... 36
4. Methodology II – system maintenance steps and procedures... 37

4.1 Objective ... 37
4.2 Introduction ... 37
4.3 System maintenance .. 38

4.3.1 Reasons for performing system maintenance.. 38
4.3.2 When and why to perform system maintenance ... 39
4.3.3 Requirements for system maintenance.. 41

4.4 Maintenance types ... 42
4.4.1 Short-term ... 43
4.4.2 Medium-term .. 44
4.4.3 Long-term.. 45

4.5 Licensing ... 46
4.5.1 Types... 47
4.5.2 Compatibility .. 47
4.5.3 Permissions and limitations... 48
4.5.4 For consideration... 48

4.6 Laboratory testing.. 49
4.6.1 Laboratory... 49
4.6.2 Laboratory isolation .. 50
4.6.3 Backing up .. 50
4.6.4 Benchmarking ... 50
4.6.5 Incremental changes.. 51
4.6.6 System administration testing ... 52
4.6.7 Behaviour and functionality.. 52
4.6.8 User-related system changes ... 53
4.6.9 Impact assessment... 54
4.6.10 Modifying system configurations ... 54
4.6.11 Outcome testing .. 55
4.6.12 Versioning and change control.. 56
4.6.13 Library and kernel modifications .. 56

viii DRDC Valcartier TN 2007-150

4.6.14 Reconfiguration and migration ... 57
4.6.15 Documentation .. 57
4.6.16 Approval process... 58

4.7 Deployment ... 58
4.7.1 Backing up .. 58
4.7.2 Deployment plan ... 59
4.7.3 Rollout... 60
4.7.4 Reconfiguration and migration ... 60
4.7.5 Reaccredidation and recertification... 60
4.7.6 Wrap-up .. 61

5. Conclusion .. 62
References ... 63
List of symbols/abbreviations/acronyms/initialisms ... 65

DRDC Valcartier TN 2007-150 1

1. Introduction

1.1 Objective

The objective of this Technical Note is to examine an update and upgrade-based methodology
that can be applied to the Linux operating system in order to maintain it and its hardware
throughout its expected long-term service. It is expected that over the years the Navy’s frigate C2
systems will not only require operating system maintenance but that they will also periodically
undergo hardware upgrades. This Technical Note addresses the necessary methodologies
required to proceed with an operating system update or upgrade and thus enable the system to
support and accommodate for periodic hardware changes. This is accomplished through two
methodologies; the first provides an outline for maintaining system integrity via backups and
restorations and the other examines the various issues that must be assessed prior to performing
any system-related maintenance. Both methodologies, when combined together form a
comprehensive system maintenance methodology that will help the reader succeed in maintaining
his system over the long-term.

1.2 Background

1.2.1 Reports

This Technical Note is the fourth and final report in a series of reports prepared for the Navy.
The very first report, Report [2], examined the various long-term support strategies needed for
maintaining an open source operating system such as Linux. Specifically, it was determined that
long-term support could be achieved by (in order of preference) by: 1) the maintainer of the
distribution (i.e. vendor); 2) a sub-contractor; 3) the Navy, and 4) a consortium.

The second report, Report [3], was an in-depth analysis of two licenses that compared Red Hat
and Novell Suse’s enterprise Linux operating systems. They were examined because the Navy
had expressed interest in these two operating systems due to: 1) both companies are North
American and 2) are already involved with the military establishment, particularly in the U.S.

The third report, Report [1], through experimentation and observation examined the Linux
operating system’s ability to adapt to changes in its underlying hardware. It was found that Linux
can reconfigure itself in order to take advantage of newer hardware, but only if the kernel is
recent enough to support that newer hardware. It was concluded that both long-term system
maintenance and hardware adaptation could be accomplished in so long as the operating system’s
kernel is kept up to date.

Reports [5, 6, and 7] are informal internal reports that were the precursor to both this Technical
Note and reports [1, 3]. These internal reports were not rigorous enough to be released as formal
reports from DRDC.

http://www.linux.org/
http://www.linux.org/
http://www.redhat.com/
http://www.novell.com/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/

2 DRDC Valcartier TN 2007-150

This Technical Note is the final report in this series. It examines the methodology necessary for
maintaining an operating system so that it can be supported over the long-term with the added
benefit of successfully accommodating and periodic hardware upgrades.

1.2.2 Mandates

All the reports mandated, including this one have been conducted for the Navy’s Directorate of
Maritime Ship Support (DMSS 8), under the auspice of the Halifax Modernized Command
Control System (HMCCS). These reports have been useful for providing technical information to
the Navy aiding it to determine which new operating system, if any, would replace the current C2
operating system aboard the Canadian Halifax-class frigate. These frigates, including both the
computer operating system and hardware are currently undergoing modernization.

The original mandate of DRDC Valcartier was to examine and address the various long-term
support strategies available to the Navy should they decide to pursue the deployment of a Linux-
based operating system aboard the frigates. Furthermore, the Navy wished to understand through
which means long-term operating system maintenance could be achieved and supported. This
work was carried out in Report [2].

Report [3] was a direct response to a question posed by the HMCCS project that was to conduct a
comparison between the corporate licenses of two popular North American Linux vendors. The
conclusion that was reached may have an important impact on determining the outcome of which
vendor’s distribution could potentially be used as the new C2 operating system.

However, as work was underway for reports [2, 3] the HMCCS project requested that DRDC
Valcartier examine whether the Linux operating system could adapt to periodic changes in
hardware and determine how this would affect overall long-term support. This was studied in
Report [1] and consisted of a series of short-lived experiments and observations that was the first
of its kind as none could be found in the public literature. Since the new C2 operating system
could be in use for 15 to 25 years, the Navy needed to ascertain the maintainability of the
operating system and its ability to adapt to periodic hardware changes that are bound to occur.

This Technical Note, although not specifically mandated, was a result of the previous reports that
examined the Navy’s potential use and implementation of Linux. Specifically, this Technical
Note uses results obtained in Report [1] and goes one step further by examining how the Linux
operating system can be maintained over the long-term using a vendor-neutral technical
methodology. The outcome is a report that provides a global overview of Linux system
maintenance that can be understood by system administrators and others with some experience in
Linux or UNIX.

1.3 Particulars

1.3.1 Reader

It is both assumed and required that the reader be familiar with Linux, UNIX, or BSD-based
operating systems and system administration-related maintenance tasks to better comprehend the

http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.unix.org/
http://www.linux.org/
http://www.unix.org/
http://www.openbsd.org/

DRDC Valcartier TN 2007-150 3

various material presented herein. For reasons of brevity, it is not possible to provide all the
required background, contextual and technical information (including commands) that a full in-
depth examination would normally provide. It is for these reasons that the reader must have at
least some knowledge of UNIX and system administration otherwise the reader will find the text
to be confusing and cumbersome.

This text is vendor neutral, is silent on many issues (including low-level commands), and assumes
that the reader is well versed and understands many of these technical issues. This Technical
Note is not a substitute for the reader’s experience that is inevitably required in order to complete
some of the various tasks examined herein. Finally, it is also assumed that the reader will be
using a commercially supported Linux-based operating system.

1.3.2 Navy

The Navy prefers that changes to the operating system be as minimal as possible in order to
accelerate the process of reaccredidation and recertification. However, where operating system
maintenance is concerned, this is not always that easy. Much will depend on what requires
maintenance and how it will be performed. There are many variables to consider prior to
performing any system maintenance-related action. Guided by the two methodologies the reader
can perform the appropriate set of actions necessary to maintain the system and support the newer
hardware.

However, the Navy must understand that operating system maintenance is not always that simple.
The main method of system maintenance employs operating system updates, upgrades, and
manual system maintenance. Updates and upgrades are generally provided by the distribution’s
vendor while manual system maintenance is performed by the customer or support provider.
Each method has its own advantages and disadvantages. Ultimately, the maintenance option that
will be used at any point in time will depend on what requires maintenance as well as who is
providing maintenance support.

1.3.3 Report

The Technical Note is broken down into various main topics or sections. The first is the
introduction that presents an overview to the reader. The second section examines technical
information about operating systems and hardware support. This section, without any previous
UNIX experience will be more difficult to understand and contextualize. The third section is a
broad overview for performing backup and restoration-related tasks. While this section goes in-
depth, it is not meant as a replacement for various books already written on the subject; instead, it
presents material that should be considered prior to undertaking any specific task or action. In
addition, section does present some new information not present in existing books on the topic.
Finally, the fourth section is a broad overview of operating system maintenance that examines the
higher-level issues surrounding updates and upgrades. Manual system maintenance has been
deliberately excluded from this section, as it is technically complex and cumbersome to examine
in a short report. Furthermore, it varies considerably from software package to software package
and its success is highly dependent on the experience and knowledge of the reader.

http://www.unix.org/
http://www.linux.org/
http://www.unix.org/

4 DRDC Valcartier TN 2007-150

This Technical Note is not meant to be an all-encompassing authority on the various subjects of
interest; instead, as a guide it should be used for gaining a higher-level overview on how to
approach the subject matter from a global perspective. Certain topics that could have been
explored more in-depth were left out to remain vendor neutral.

Furthermore, in order to ascertain this study’s relevancy it is important to understand the
correlation between the operating system and its life expectancy. As a function of time hardware
is expected to change, it is therefore only reasonable to expect that a C2 system will undergo
hardware changes. In order for the operating system to support newer hardware, it must be kept
up to date. This is particularly important for hardware employing technology that is not currently
supported by older kernels and can be accomplished through updates, upgrades, and manual
system maintenance.

1.3.4 Methodology

A generic methodology will help to accommodate for the various types of long-term system
maintenance and allow the reader to use whichever form is most suitable to his current
requirements. However, due to the generalities involved in formulating a generic methodology,
many specifics are kept out of the overall process so that the reader can decide which tools and
other specifics are most appropriate. Furthermore, a generic approach keeps the text short and
concise. In addition, in order to maintain brevity and simplicity, some issues, concepts, and tasks
have been altogether left out; they should not affect the overall clarity, as they are minor details
that can be filled in by the reader’s experience and knowledge.

It is important to understand the difference between an operating system update and upgrade.
They differ only in the magnitude of changes made to the operating system. An update generally
has less overall impact on the operating system than an upgrade. However, in order to ensure a
minimal impact for either they should be performed periodically.

Furthermore, a generic methodology is the best possible approach in order to ensure a successful
hardware migration and operating system hardware reconfiguration whenever newer hardware
must be supported. As examined in Report [1], a migration and reconfiguration are generally the
most appropriate methods for either adapting to newer hardware or moving from one platform to
the next. By avoiding the necessity of installing a newer operating system, many potential issues
of conflict and contention can altogether be avoided. In addition, employing a generic
methodology frees the reader to focus on higher-level issues.

A generic methodology allows for a global overview of the concepts and tasks to be
accomplished. How they are completed and through which means is of little concern here.
Finally, a generic approach facilitates the interchanging of various lower-level technologies and
tools as the higher-level concepts (i.e. the methodology) are generally left unaffected by lower-
level changes.

DRDC Valcartier TN 2007-150 5

2. Technical background

2.1 Objective

In this section, several important aspects important for operating systems, regardless of the type
of system or underlying computer platform are examined. The first aspect presents basic
technical information on operating system migrations and reconfigurations. The second presents
technical information on operating systems including dependencies and call facilities. Thirdly,
compatibility-based issues are briefly examined.

2.2 Reconfigurations and migrations

2.2.1 Background

The most common reason for performing a hardware reconfiguration is to save time and avoid a
complete security recertification of the operating system. Rather than install a newer operating
system, often considered a daunting task, it may be more appropriate to leverage on the existing
operating system with its current configurations and settings.

The Navy has stated that it may not be possible for them to perform full operating system
upgrades1 due to restraints in security, certification, auditing, system and change management as
well as overall maintenance. Essentially, the Navy is opting to freeze or “lock out” the operating
system with a given configuration for its entire lifetime of between 15 and 25 years. However, it
is reasonable to assume that over this period there will be periodic hardware upgrades to the C2
systems. These upgrades may include minor hardware changes or be complete system overhauls.

Generally, outdated operating systems that are not kept at least partially up to date will not fair
well in supporting modern hardware. Although the Navy may not be able to switch to a more
recent operating system, it can nevertheless benefit from a reconfiguration in so long as the
kernel, drivers, and other subsystems are kept to reasonably up to date. Thus, existing
applications, preferences, and configurations can be maintained, as can the majority of operating
system dependencies and interdependencies, thereby forgoing the necessity for an in-depth
recertification of the system before redeployment. Only software that has actually changed would
need to be tested and recertified; specifically, the kernel. In large modern operating systems such
as Linux, the kernel normally represents less than 1% to 2% of the entire operating system.
Furthermore, using modern techniques in static analysis it becomes possible to better assess
various vulnerabilities and flaws in the kernel source code [8, 9]. This will help to make a multi-
month recertification process last only several weeks, significantly reducing costs and
complexities.

1 By this it is meant going from one version of a Linux distribution to another version of that distribution.
An example of this would be going from Red Hat Enterprise Linux (RHEL) 3 to version RHEL 4.

http://www.linux.org/

6 DRDC Valcartier TN 2007-150

2.2.2 Reconfigurations

A hardware reconfiguration, with respect to reports [1, 5, 6, and 7] is also commonly known as
operating system hardware reconfiguration, operating system reconfiguration, or
reconfiguration, although they all have the same meaning. They can be collectively defined as
“the ability for an operating system to effectively deal with any changes to the underlying
hardware and effectively perpetuate those changes to the appropriate software layers of the
operating system such that the changes should remain as transparent as possible to the user.”

Several things must be present for a successful reconfiguration prior to changing any hardware.
Firstly, the operating system must actually provide software-based support for hardware
detection/redetection. Subsequently, a mechanism must exist by which hardware
detection/redetection can be triggered, either automatically at system start-up or manually by the
system administrator at any given time. Thirdly, the changes to the operating system must be
effectuated in such a manner that they are transparent to the end-user and do not generally require
the administrator to manually modify system configuration files.

The majority of today’s Linux-based distribution kernels are built “out of the box” to support a
wide variety of hardware devices and computing platforms. Most of these operating systems also
support various mechanisms for detecting hardware during their initial setup and installation
phases. They also have redetection-based tools to detect post-installation changes to the hardware
and make the necessary operating system changes to the various operating system configuration
files. Some operating systems detect hardware changes automatically, sometimes referred to as
dynamic reconfiguration, while others do not have this ability and must be run manually, and
referred to as static reconfiguration. So long as the operating system supports either dynamic or
static, it can be said that the operating system is capable of hardware reconfiguration. Whether it
is dynamic or static is perhaps a reflection of the level of sophistication of the operating system
itself and therefore static and dynamic reconfigurations can be treated as one in the same.
However, the ability for a reconfiguration to occur is commensurate with the maturity of the
operating system. Older Linux systems often encountered difficulty supporting existing
hardware; in such cases where older Linux systems are used, it is not realistic to expect it to
support newer changes in hardware.

2.2.3 Migrations

A hardware migration (with respect to reports [1, 5, 6, and 7]), often referred to as migration, is a
term similar to operating system hardware reconfiguration. However, they differ in that a
migration2 is an operating system hardware reconfiguration that takes place only after the entire
underlying computing platform has been replaced. In other words, the operating system is
altogether transferred to another computer by various means (i.e. disk copying, etc.). An example
of this would be moving a Linux-based operating system from a Pentium-class system to a
Pentium IV-class system. Most, if not all the new system’s hardware will be completely different
from that of its predecessor. An operating system hardware reconfiguration then takes place only
once the power is applied to the new system and is allowed to boot. Depending on the maturity
of the Linux operating system in question, the reconfiguration, if it occurs may be either dynamic
or static in nature.

2 Migrations can only be performed on systems with the same basic architecture (i.e. x86, x64, etc.).

http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/

DRDC Valcartier TN 2007-150 7

2.3 Operating systems

2.3.1 Background

Operating systems are far larger and complex than they were, even ten years ago. For this reason,
in this section, a brief examination of operating systems and the technical issues as well as
complexities surrounding them will be examined in the following subsections. Although this
section is specifically concerned with the Linux operating system, it is equally applicable to other
open source and non-open source operating systems as well.

2.3.2 Definition

The term operating system has been given many varying definitions over the years. In this text,
the more classical definition of the term is used. An operating system can be big or small; it is
not defined by size. At a minimum, an operating system is a collection of executable code
separated into individual computer files that controls the computer’s hardware and user-based
applications, tools, and utilities. An operating system is compromised of: 1) a kernel; 2) a shell or
GUI (for interacting with the kernel and launching applications); and 3) user-based applications.

The kernel provides the low-level facility (or layer) that interacts directly with the system’s
hardware. The kernel consists of various device drivers, memory management components, and a
general framework for interacting with the hardware and running applications. The shell or GUI
accepts user-based input used for interacting with the system’s hardware and running various
applications and utilities that perform some useful work on the user’s behalf. Finally, user
applications and utilities exist to provide services and functionality to the user.

With Linux, it is important to understand the difference between the Linux kernel and a Linux-
based operating system. Linux, in of itself, refers only to the GNU/Linux kernel which includes
drivers and various subsystems such as memory management components. A Linux-based
operating system, at its most basic, is no more different from any other computer operating
system. It too is compromised of a kernel, a shell (or GUI) for user-based interactions with the
kernel, and a collection of user-based applications. Thus, a Linux-based operating system is more
than just GNU/Linux kernel, but also includes a command line shell or GUI, an assortment of
user-based tools, applications, utilities, documentation, source code, etc. Together these form a
usable and functional computer operating system.

2.3.3 System dependencies

2.3.3.1 Interdependencies

Every operating system has interdependencies. Interdependency exists where one or more
software components rely on other components. These components can be either related (part of
the same application) or completely unrelated (from a different application). Related or not, there
is nevertheless a relationship between the various components. In this relationship, one
component requires something from the other. It could also be that both components are co-
dependent (dependent on each other) or the dependency could be one-way only. Most often, it is

http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.gnu.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.gnu.org/
http://www.linux.org/

8 DRDC Valcartier TN 2007-150

functions and API’s that are required by one component from another. However, depending on
how the software was written (including the overall design) co-dependent components do exist
where they require one another for their own proper functioning.

To better understand interdependency, it helps to use a simple example. For instance, the
example of an application and software library come easily to mind. In order for the application
to work correctly, it requires access to certain functions and API’s that can only be satisfied by
that specific library. Otherwise, the programmer will have to recreate those functions and API’s;
this is a very complex and time-consuming process. However, often time the software library is
not actually a part of the application; instead, it is from a different application altogether (this is
particularly common in UNIX). However, because the programmer wishes to reduce the amount
and complexity of his work, using functions and API’s developed by others reduces his time,
work, and expended effort. Programmers tend to prefer building on pre-existing work (i.e.
functions, API’s, system calls) since doing otherwise can lead to increased programming and
operating system complexity.

In large Linux-based operating systems, it is common to have many thousands of such
interdependencies. Such a system could have thousands of applications installed and most of
them will require functions and API’s from any one of the various software libraries found
distributed across the operating system. Although it is possible to develop entirely self-contained
applications, it is normally not done, as rewriting existing library functionality already available is
unproductive.

2.3.3.2 System calls

Another type of interdependency is the system call. A system call, according to [4] is an
operating system subroutine that provides a uniform manner for performing operating system-
level tasks such as deleting files, managing directories, opening hardware for I/O, communicating
with the network, etc. A system call relies on pre-existing functions and API’s provided by the
kernel. Using system calls a programmer does not have recreate a function or API already
provided by the system; furthermore, in all likelihood, the new function would not be as
efficiently written. Because the kernel controls the system’s hardware, it makes sense to place
low-level functionality into the kernel that can be used by developers and programmers alike.
When a low-level task (i.e. routine) is called by an application, it places the system call and
passes control to the kernel which then runs the appropriate subroutine (i.e. system call), and once
completed, returns control back to the requesting application.

2.4 Compatibility issues

2.4.1 Background

Due to its modular nature the Linux, operating system can be replaced in whole or in pieces. Of
course, the issue of software and library interdependencies may need to be resolved when
updating or upgrading both software and the operating system.

The openness of Linux makes it possible to see the interdependent nature of applications that rely
on various software libraries and the kernel. There are tools that come bundled with most Linux

http://www.unix.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.linux.org/

DRDC Valcartier TN 2007-150 9

systems that enable the user to examine the various functions and system calls made by
requesting applications for library and/or kernel functionality. These tools can also be used to
examine library-based issues (i.e. inconsistencies and incompatibilities) that can arise when they
are replaced by newer versions. Sometimes the problem with newer libraries is that older
functionality is removed thus causing issues with older dependent applications and libraries;
nevertheless, this functionality may still be required by certain applications. Therefore, these
various troubleshooting tools can also be used to track down specifics that may be indicative of a
potential failure when upgrading libraries and or the kernel.

When upgrading a kernel or software library, it is not always possible to determine the impact
that changes to these libraries or kernel may have on the system. This is why it is important to
test applications after upgrades.

2.4.2 Upgrades

Upgrades impose newer versions of software on the system. Due to the modular nature of Linux
this is generally not an issue. However, existing software that is overwritten by newer software
can have far-reaching consequences. These changes could affect a variety of applications and
libraries alike. This can introduce interoperability-based issues that are not easily diagnosed or
fixed. Furthermore, it is also possible that user preferences and system-wide configurations will
require re-examination after an upgrade as these too many have changed. Another issue of
concern with upgrades is that certain applications may no longer be supported by either the
distribution’s maintainer or even by the open source community (in which case support and
upgrades are no longer available), or both. In either case, when support for an application is
dropped, extra work will be required on the part of the system administrator. If both forms of
support are gone, then the application will have to be maintained by the organization itself
through various support strategies [2].

Upgrades are generally far more wide reaching in terms of potential consequences than updates.
Upgrades generally infer that the system’s applications, libraries, kernel, and other important
subsystems are to be replaced by newer equivalents that may or may not be radically different
from their predecessors. Updates on the other hand tend to cause minimal system changes that
often represent little to no discernable impact for both the users (and their applications) and
system administrator.

Upgrades, in the sense used throughout this text are indicative of an installation program
developed by the distribution’s maintainer that are intentionally designed and used for upgrading
the operating system. Furthermore, upgrades can require a great deal of time to reaccredit and
recertify since upgrades generally impact the entire operating system and not just portions of it, as
is the case for most updates. Finally, upgrades are performed for a variety of reasons; sometimes
to achieve the next level of functionality or sometimes simply because updates are no longer
available for a specific version of an operating system.

2.4.3 Updates

Updates are not generally as far reaching as an upgrade as the intention of an update is to provide
bug fixes, enhanced features, security, and functionality. Sometimes updates may also provide

http://www.linux.org/

10 DRDC Valcartier TN 2007-150

enhanced performance and system stability. Nevertheless, the changes imparted onto the system
should not generally affect other programs, including outdated programs that require recently
updated libraries for their dependencies3. This is because updated libraries are not generally
different enough from their predecessors to cause serious compatibility-based issues.

Most if not all updates are transparent to both the user and the system administrator in terms of
the overall system impact. It is rare for system wide and user-based preferences to be changed.
Furthermore, updates generally increase functionality, not take it away. However, the possibility
is always there.

Interestingly, updates can perceptually require every bit as much time as an upgrade to rollout in
order for the operating system to be reaccredited and recertified as suitable for redeployment.
This is particularly true when many system components are updated on the system. However,
with updates, as in contrast to upgrades, only portions of the system can be updated at any time
such as the kernel and its related subcomponents or an application suite.

The key difference between updates and upgrades is that updates generally cease to be able
available after a set period. It is common after several years for updates to no longer be available,
as the distribution’s maintainer will inform customers that support is no longer available and
persuade them to upgrade. Updates, as examined in this text relate to packages provided by the
maintainer for use with an application specifically for updating. Although manual updating is
possible, this is generally considered as manual maintenance, is very time consuming, and not
suggested except when required by circumstances.

Updates are generally used to keep an operating system up to date on an intermittent basis before
an upgrade is actually available. Sometimes, it may not be desirable to proceed to an upgrade just
yet. In this event, updates can be used to not only keep the system up to date but also to
potentially exploit some of the newer benefits imparted onto to the newer operating system by the
maintainer; however, this may vary as not all maintainers will provide new functionality in their
updates.

2.4.4 Manual maintenance

Performing manual maintenance (via manual patching, recompilation, reinstallation, etc.) is far
from an impossible task. It is however a time-consuming task, and is sometimes daunting,
particularly if the system administrator does not have enough experience. Manual maintenance
requires finding a more recent version of an application, tool, utility, or kernel, and through
access to source code is recompiled and reinstalled. Furthermore, the latest source code patch can
be applied to the original source code and the program can then be recompiled and reinstalled.

The fact that the Linux operating system is modular makes it possible to install newer
applications and libraries possible without generally compromising system integrity and stability.
This in turn enables a more rapid reaccredidation and recertification so that the operating system
can be quickly redeployed. In addition, by maintaining vigorous system version control and
actively documenting all changes made to the operating system through manual maintenance, it

3 However, this will vary from case to case; this is only a general rule of thumb.

http://www.linux.org/

DRDC Valcartier TN 2007-150 11

will be easier to successfully upgrade various operating system components without affecting
overall stability and further help to increase the efficiency of this process.

2.4.5 Issues

2.4.5.1 Potential problems

Regardless of whether an update, upgrade, or manual maintenance is performed, there is always
the risk of incompatibilities and/or inconsistencies in the system due to abrupt changes in system
libraries. For example, older applications may rely on a set of functions and API’s from a given
library. However, if that application is no longer supported through a given upgrade and that
required library is in some way substantially different from its predecessor the application will
very likely become inoperable.

Of course, there are ways around this, but this can only be determined by attempting the upgrade
and testing the various applications. If it turns out that the newer library does not provide the
required functionality, then the appropriate version can be reloaded onto the system from backup
media. However, it should be restored back onto the system in a different location. At this time,
the system administrator can create specialized environments using environment variables so that
the affected application knows where to correctly locate its required library(ies).

Although this is only an example, it represents the main problem encountered when upgrading
(and sometimes after updates) an operating system. Thus, the only way to be sure of system
integrity after an upgrade is to test required and other important system applications.

2.4.5.2 Solutions

It is very likely that the issue of system library inconsistencies can best be managed over a very
long-term period similar to the Navy’s requirements of 15 to 25 years is to perform manual
system maintenance. Doing this for an operating system is certainly is far more complex and
time consuming than for updates and upgrades.

The main problem with upgrades, as already stated is that there will come a point in which older
programs will no longer work because: 1) they are no longer supported; 2) libraries that they
depend will no longer be supported, or 3) those libraries will have been changed to newer
versions that will not support the older API’s and functions. This is never a certainty but it is
likely, and the larger the distribution the more likely it will become. This is because larger
distributions inherently have more interdependencies due to the increased number of applications.

The main issue with updates is that there comes a point in which the maintainer of the distribution
will no longer provide those updates for a version of the operating system. As a given operating
system becomes older and is replaced by newer versions it becomes more likely, looking to the
future, that at a certain point both support, updates and upgrades, and patches will no longer be
released for older operating system versions. At this time, it is highly likely that the maintainer
will attempt to convince the customer to migrate to a newer and supported version of the
operating system, perhaps by offering financial incentives. However, in upgrading the system, a
different set of problems will occur over time, as previously explained.

12 DRDC Valcartier TN 2007-150

The problem in maintaining the same operating system for such a lengthy period is that there will
inevitably come a time when software must move forward with the times. In most cases, the
majority of C2 applications are likely to be custom-built; therefore, it will be the kernel and
certain other key open source applications that will have to be maintained over the long-term.

Thus, in order to maintain vigorous control over what is to be changed, replaced, and how and
where the binaries are to be installed can only be accomplished through manual system
maintenance. While much of the work in manual system maintenance will require the manual
reconfiguration, recompilation, and reinstallation of programs and libraries, the system
administrator has full control over how the reinstallation is to occur and thus gains much larger
control over how the overall system will be affected. Unfortunately, this requires a system
administrator with both ample system administration and programming experience in order to be
able to adapt to all the various tasks he is likely to encounter. Of course, the system administrator
can continue to take full advantage of updates and upgrades in so long as they do not compromise
system integrity. Furthermore, it is highly suggested that the system administrator take full
advantage of updates and upgrades as long as they are available and do not compromise overall
system stability and integrity; manual maintenance should be left as a final option for
maintaining long-term operating system employability.

The ultimate benefit of performing manual system maintenance is manifest. Through vigorous
system, application and binary control it is possible to minimize or disregard any potential
changes to the system. By documenting all system actions and changes, it is possible to
realistically trace and narrow down the root cause of problems to previously taken actions or
changes. Because of this, it is reasonably expected that reaccredidation and recertification of the
operating system will be far less time consuming than with updates and upgrades such that the C2
operating system is ready for rapid redeployment.

Furthermore, the emphasis of a trial laboratory in which to perform tests and exercises prior to
final deployment aboard the frigates cannot be overemphasized. In this lab setting, it becomes
possible to determine most potential issues of contention before they become apparent in a theatre
of operation.

2.4.5.3 Tools

Most Linux operating systems come with several pre-bundled tools that allow system
administrators and programmers to more closely examine the system calls and interdependencies
required by various applications. The main tools are Ltrace and Strace. Each of these tools
performs a different task, but when combined together, they are able to provide a great deal of
information about an application and its many dependencies.

Strace can be used to display all the kernel related system calls that an application makes. The
system’s current system calls be found in various files across the system. Under Fedora Core 6,
the kernel’s available system calls are found in /usr/include/bits/syscall.h. Using this command,
it is possible to debug various issues that can result from a changed kernel [10, 11]. This
command also makes it possible to determine various race conditions that may result from system
calls as well as the various libraries that are accessed. Strace cannot be used against actual library
files.

http://www.linux.org/
http://www.debian.org/
http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://fedoraproject.org/wiki/
http://sourceforge.net/projects/strace/

DRDC Valcartier TN 2007-150 13

Ltrace is another type of program [12]. It is similar to Strace but it differs in that it is designed to
list all the library functions used by an application. It can also be used to list all an application’s
system calls; however, this option is best left to Strace. However, Ltrace does not actually
provide the name of the library the function requires nor can it be used against library files.

If a program is running in memory, left in the background, or runs long enough to run another
command from the same or different command line, more information about which specific
libraries are used can be found from /proc/?/maps and /proc/?/smaps where “?” denotes the
process id (PID) of the application in question [13, 14]. Both files list the basic information
although they present it differently. Furthermore, although these files provide no details about the
specific functions used by their host application, at least they are very clear about which libraries
are actually required. This can be very helpful in tracking down missing or changed libraries.

Ldd [15, 16] is another tool that can be used to list all the libraries a specific application uses. It
is very simple to use and does not require parsing through many pages of information as is the
case with Ltrace [12]. This program is also able to determine library file dependencies making it
very useful for determining other possible library-based contentions. The program can be run
against both executables and libraries.

Objdump is another very useful program [17] that is used to determine library functions and the
originating library. However, the library name is not always stated as the actual file name of the
library. Often times, libraries are given proper names and this is recognized and used by
Objdump. Therefore, combining this tool with Ldd [15, 16] will help to sort out any confusion.
The program can be run against both executables and libraries.

Lesser-used programs that can be of use include Readelf [17] and Lsof [18]. It is certain that the
abovementioned tools may not be suitable under all circumstances; however, without any
debugging information attached to a library or executable, they are an excellent substitute.
Furthermore, they are easy to use, even for the novice. More advanced tools are available
commercially and are sometimes bundled with specialty development environments for Linux.
By combining the information from the various tools, it becomes possible to narrow down many
potential problems, and once known, fixing the problem is a more straightforward task.

2.5 Summary

Understanding how modern complex operating systems function can be a cumbersome task. It is
not necessary to fully understand all the finer details; however, a basic understanding of
dependencies and their affect on the system’s overall stability and integrity is important. Many
tools can be used alone or combined to provide a clearer of view of dependencies and their
interaction with one another. The type of system maintenance that will be chosen to keep the
system’s kernel (at a minimum) up to date will depend in part on the expertise of the system
administrator and the availability of updates and upgrades. There is no clear-cut solution. In
certain circumstances, it is more appropriate to apply an update or upgrade. In other cases, these
should be altogether overlooked when manual system maintenance is the simplest and clearest
solution for a specific update of the kernel, application, or library.

http://www.debian.org/
http://sourceforge.net/projects/strace/
http://sourceforge.net/projects/strace/
http://www.debian.org/
http://www.debian.org/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://people.freebsd.org/~abe/
http://www.linux.org/

14 DRDC Valcartier TN 2007-150

Furthermore, although the Navy has expressed its desire to resist performing operating system
updates and/or upgrades, it is very likely that at one point they will no longer have any choice. It
is unrealistic for the Navy to expect that manual system maintenance is the solution for all their
maintenance needs. The cost in resources and capital will too high and complex, especially at the
beginning of a deployment. The Navy has many options available to it for providing various
forms of maintenance [2]. In addition, whether only the first few years (most likely for the first
half of the C2 system’s lifespan), regardless is maintenance is provided through updates and/or
upgrades, both are customizable. Upgrades, however, are generally less customizable than
updates. Therefore, for at least the first 10 to 15 years the Navy should not have to worry about
having to perform manual system maintenance. Unfortunately, once a point has been reached
where the vendor no longer exists, no longer provides support, changed its business line or the
Navy can no longer approve of newer operating system versions due to excessive compatibility-
based issues (or other issues) then the Navy will have little choice but to pursue manual system
maintenance. Until that time, however, it is not suggested.

In conclusion, the Navy will very likely have no choice about performing updates and upgrades if
they plan to periodically change hardware. Even a system’s hardware that is never changed
(which over a 15 to 25 lifespan is very unrealistic) must still be periodically maintained for a
variety of reasons, as already put forward earlier in the section. A non-maintained system will
eventually suffer from software degradation, a condition that all software experiences through
long-term use and often the only remedy is software maintenance.

DRDC Valcartier TN 2007-150 15

3. Methodology I - backup and restoration

3.1 Objective

The objective of this section is to examine in detail the various issues that must be understood
before attempting to undertake the task of preparing and creating full system backups. Backups
are vital to restoring the system to an operational state should any system changes fail. Failure
can occur during laboratory tests, migrations, reconfiguration, updates, upgrades, or manual
system maintenance. The importance of having a laboratory for testing purposes cannot be
overemphasized. In this test environment various backup and restoration procedures can be
examined to ensure the applicability and usefulness of a given backup-restoration scheme, as well
as ensure data integrity before proceeding with Part II.

3.2 Backup considerations

3.2.1 Plan development

A plan should be developed prior to performing any backup of the computer systems and their
filesystems. This plan should take into account the various facets necessary for a successful
backup as are examined in the following sections. A backup plan will be the result of a
methodological analysis that is a synthesis of the organization’s operational policy and
requirements that also includes the computers’ operating system capabilities and requirements. In
addition, a backup plan must be both flexible and adaptable, as contextual changes that are likely
to occur must accommodate for unforeseen errors and mistakes. These contentious problems can
be introduced by hardware, software, and human error; a robust plan will provide for alternate
ways around them in order to successfully perform a backup. The backup plan will have a direct
impact on the restoration plan (Section 3.4.2) that will itself have to overcome many of the same
challenges, thus ensuring the continual availability of data. Finally, as with any plan, it should
not be put into action until it has been documented, analysed, reviewed, and tested.

3.2.2 Tools

The tools Dump and DD are generally best suited for performing operating system-based
backups. However, other tools such as Tar and Cpio are more suitable for user and application-
based backups. However, different contexts will require different tools for the specific task. The
capabilities and ineffectualness of the various tools are examined in the ensuing sections.
Although Dump and DD are preferable for operating system-based backups, Tar and Cpio have
their own specific uses and capabilities. It is assumed that the reader is familiar with the
aforementioned tools and understands how to implement them. Finally, no commercial backup
tool has been examined in this Technical Note in order to maintain tool uniformity with respect to
the various Linux distributions currently available on the market.

http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.linux.org/

16 DRDC Valcartier TN 2007-150

3.2.3 Data-related factors

An important factor for determining the appropriate backup scheme is the type of data to be
backed up. The data type, its location, availability, and correlation to the operating system will
largely determine which tool or tools can be used. The following subsections are an in-depth
examination of these various factors.

3.2.3.1 Data type

A determining factor for selecting the appropriate type of backup scheme will depend on whether
the data is operating system, user, or application-based. Furthermore, the data type will influence
the selection of the backup tool. Operating system data should only be backed up using Dump or
DD (for reasons to be examined further on) while user and application-based data can generally
be backed up using any of the four aforementioned tools. These issues are examined in the
different subsections below.

3.2.3.2 Special attributes

A determining factor for selecting the appropriate type of backup scheme will depend on whether
there are special filesystem attributes that need to be backed up. Backup tools Tar and Cpio
cannot capture special file and filesystem attributes. These files can, however, be backed up
using DD and Dump.

3.2.3.3 Devices

A determining factor for selecting the appropriate type of backup scheme will depend on whether
there are device files to be backed up. Devices files can be backed using all of the various tools.
However, if the devices are locked, in use, or are automatically skipped by some of the tools then
DD and Dump can be used. Since device files rarely use extended attributes, assuming the device
files are accessible, the tools Tar and Cpio should be able to backup them up.

3.2.3.4 Raw data

A determining factor for selecting the appropriate type of backup scheme will depend on whether
any raw partitions or data need to be backed up (i.e. raw database partitions). DD is uniquely
suited to this task. Dump, Tar and Cpio cannot be used because there is no recognizable
filesystem for data acquisition from these partitions or devices.

3.2.3.5 Locked files

A determining factor for selecting the appropriate type of backup scheme will depend on whether
locked files need to be backed up. Certain key operating system files from /dev and /proc are
automatically locked by the kernel and normally not accessible by most of the backup tools.
These files are also generally off limits to users and applications (and sometimes the root user).
Consider the following:

http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/

DRDC Valcartier TN 2007-150 17

a. Are there locked operating system files? DD is generally the only way to acquire them
using a partition dump if the Dump program cannot acquire them, but this should only be
done if the filesystem is inactive otherwise image acquisition may result in a corrupt
image. It is preferable to run DD only when the partition/disk is offline or mounted read-
only.

b. Are there user or application-based locked files? Can those files be backed up without
resulting in file or data corruption? Generally, other than for database files, locked
application and user files can be backed up using Tar, Cpio, and Dump.; however, locked
operating system files cannot.

c. If some files must be backed up and are locked and inaccessible no matter what is
attempted then a rescue or Live CD can be used to backup the files.

3.2.3.6 Data file volatility

A determining factor for selecting the appropriate type of backup scheme will depend on whether
the files to be backed up contain volatile state-based information about the operating system or
some arbitrary application or service. Consider the following:

a. Operating system files that contain volatile data from directories such as /dev and /proc
should only be backed up using Dump. Many of these files, especially from /proc contain
very volatile system and application data (i.e. RAM, system and application states, etc.)
and must be treated carefully.

b. Some of the files are application and service-based and can be safely backed up when the
offending application or service is disabled. Nevertheless, Dump can normally handle
these files, even if they are left running.

c. Device files (/dev), however, sometimes can be problematic. For device files that must
be backed up but that cannot be accessed, disabling a specific device will often work.
Dump can normally backup these files even if they are in use. However, in case where
they cannot be backed up Dump, DD can be used, but only if the filesystem is quiescent.

d. If for some reason certain files that must be backed up cannot be accessed regardless of
what is attempted, then the system must be placed offline and backed up using a rescue or
Live CD.

3.2.3.7 Running applications and services

A determining factor for selecting the appropriate type of backup scheme will depend on whether
application-based files can be backed up while the application is left running. For example, it is
generally not advisable to backup a database file while its corresponding application is running;
buffered data may not have yet been written out to the database, potentially resulting in data loss
upon restoration. Consider the following:

http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/

18 DRDC Valcartier TN 2007-150

a. An application of service left running can normally be backed up as is. Tar and Cpio are
well suited for application-based backups. Dump can also be used although it is more of
an all-purpose tool.

b. If the application is a database application, then the application and its files can normally
be backed up. However, database files should never be backed up while their
corresponding applications are running.

c. Many small database files can be backed up while their corresponding applications are
running. This however, will however, depend on the type and size of the database.
Larger databases and should always be shut down prior to backing up. This is due
unwritten buffered data in memory. For smaller databases, unwritten buffered data may
result in nothing more than several minutes’ worth of data loss. Larger databases,
however, may be inconsistent and be rendered unusable if buffered data is left
unsynchronized.

d. Is the application data stored on partitioned or raw devices? Tar, Cpio, and Dump will on
partitioned devices where a valid filesystem structure exists. DD is best suited to raw
devices.

e. Are the applications services? They too can normally be backed up. However, services
often write data out to log files and these log files may not have been recently
synchronized such that when backed up may not contain unwritten buffered data,
resulting in partial data loss. If a service’s log file(s) is important then the corresponding
service should be shutdown prior to backing it up. Normally, however, backing up
services and their various files is not an issue.

f. Are user data files currently in use by applications? Normally, user data files (i.e. word
processing, spreadsheets, etc.) that are in use can be backed up. However, much will
depend on file sizes and how often buffered data is synchronized. Normally, this will not
result in corrupted files but may result in partial data loss. Therefore, in use user files can
be backed up.

g. If certain files are locked and the corresponding application or service cannot be
shutdown, then certain files may have to be skipped. If the filesystem is active then DD
can be used to acquire an image or the system can be taken offline and backed up from a
rescue or Live CD.

h. Are files being shared over the network? These files can also be backed up. However, if
they are in are being edited or modified then what is in memory may not be consistent
with what was backed up unless unwritten buffered data are synchronized out to disk
before backing them up.

In summary, it should be considered a good practice to shut down all non-essential user-
applications and databases before backing them up. If they must be left running, ensure wherever
possible that unwritten buffered writes are synchronized to disk.

http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/

DRDC Valcartier TN 2007-150 19

3.2.3.8 Active operating system

A determining factor for selecting the appropriate type of backup scheme will depend on whether
the operating system can be left running while backing it up. This will depend on a host of issues
such as file types, special file locking mechanisms, and the availability of devices and files.
Generally, most if not all operating system files can be backed up while the system is running;
however, it may be necessary to shut down certain services and user-based applications before
proceeding with a backup. Consider the following:

a. What is the availability of the operating system’s files? Are they all available? Are some
unavailable? Can the backup proceed without those files? Generally, once applications
and services have been disabled (only if necessary) the only inaccessible files are volatile
and device-locked files that are not generally required for operating system backups.
However, if one or more of these files must be backed up, then an offline system backup
using Dump or DD can be using a rescue or Live CD.

b. If necessary, can the operating system be shutdown for a given period to back it up? This
may depend on organizational policies and operational requirements. An inactive
operating system and its files can always be backed up when it is offline, regardless of
file type, data contents, access lists, permissions, etc.

c. Can portions (i.e. partitions) of the operating system be taken offline or made read-only
in order to decrease backup and system downtime while other online parts are backed up?
For example, /usr or /var could be taken offline since few to no operational changes are
made here while the system is running.

d. Is it important to backup the more volatile portions of the operating system such as /proc?
Generally, the answer is no as most of its contents are volatile and dynamic and is only
required by the running kernel. Only certain static text configurations are worth backing
up from here, but these configurations should always be made from start-up and
initialization files and scripts. However, if necessary Dump can often be used for backing
up the contents of /proc without taking the system offline.

e. If certain files cannot be backed up while the system is online will a restoration be
successful without those files? If not, are there are other available sources for those files?
If not, then the operating system will have to be taken offline in order to backup those
files.

f. Is the operating system spread across multiple disks and/or partitions? If so, then often
these operating systems are easier to backup than single-partition systems. There are
many various reasons why this type of system is easier to backup. Dump can be used for
almost all the partitions and where it cannot be used, if a given partition can be brought
offline or is inactive, and then DD can be used.

g. Many other factors exist that must be contended with that go beyond the scope of this
subsection. Whenever system volatility and file accessibility-based issues are present,
backup procedures will generally be more cumbersome than they would otherwise have

http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/

20 DRDC Valcartier TN 2007-150

been. Thus, there is unfortunately no ubiquitous solution for operating system backups,
only practical solutions.

3.2.3.9 Filesystem availability

A determining factor for selecting the appropriate type of backup scheme will depend on whether
filesystem(s) can be placed offline. This may vary according to various system requirements and
organizational policy. Consider the following:

a. Can the files be safely backed up if the filesystems are mounted? If so, then Tar, Cpio,
and Dump can be used. DD should never be used on actively mounted partitions unless
the filesystem(s) is quiescent.

b. If one or more partitions are placed in read-only mode, can the operating system carry on
for the duration of the backup without affecting system stability? If so, then Tar, Cpio,
Dump, or DD can be used.

c. Will placing filesystems in read-only mode affect applications, services, and user data
files? If so, then either backups should be performed during off-hours or if this is not
possible, disable the affected services and applications.

d. If one or more partitions are placed offline can the operating system carry on for the
duration of the backup without affecting system stability? If so, then Dump or DD can be
used.

e. Will placing filesystems offline affect applications, services, and user data files? If so,
then either backups should be performed during off-hours or if this is not possible,
disable the affected services and applications.

f. Are locked files preventing filesystems from going offline or being made read-only? If
so, then by disabling the service or application using the locked file(s) may correct the
problem. If it does not, then the system itself may have to be placed offline in order to
obtain a backup of the affected filesystem.

3.2.4 Other backup factors

3.2.4.1 Media

A determining factor for selecting the appropriate type of backup scheme will depend on the type
of backup media that will be used, its location, its path, and its availability. The backup media
can be local or remote to the system to be backed up and it can be a disk or tape. It is important
that media access always be available under varying conditions. For example, if data is normally
backed up to a local tape drive and it fails, then a remote tape drive can be used but only if the
network path is available and permissions are set for sending and receiving a remote data stream.
Consider the following:

http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/

DRDC Valcartier TN 2007-150 21

a. Is enough media available, especially if tape is used? Is the backup tool multivolume
capable? DD is not multivolume capable but it can be made so through scripts.

b. Can the media be read and written to by other devices? For example, is the media
universal enough that other devices (i.e. tape drive) can read and/or write to/from it?

c. Are spare local and remote backup media and devices available to parallelize the backup
if multiple disks and/or partitions can be simultaneously archived? The backup tool does
not need to be multivolume capable in this case, only multi-device capable (achieved
through scripts).

d. If the media and/or archival device are remotely located, are the necessary network
permissions appropriately granted for data streaming and reception?

e. Are the device, media, and network paths available? Are there specific schedules for
their usage or are they available 24x7? Can they be rededicated for other tasks?

f. Is the media checked for errors prior to usage? If not, can this be automated using
scripts? Does the backup device perform error or CRC-checking?

g. Are different types of backups stored on different media? For example, are backups done
at different times placed on the same or different media? If an incremental and
differential backup of one or more systems is done, are they too placed on the same
media?

h. Are different types of data stored on different media? For example, will operating system
backups be placed on the same media as user data backups?

3.2.4.2 Lifespan and storage

It is important to determine how long data should be kept. Depending on the data and its
function, it may be necessary to keep it for several weeks, months, or longer. For example, legal
documents by law must be kept for a prescribed period. Consider the following:

a. Is the data to be kept for a short or long period? Are there any laws that mandate how
long certain types of documents must be kept? What is the organizational policy
concerning backup and data longevity? Is the policy the same for user data and operating
system data?

b. How long must different types of data or backups be stored? For example, is user data
stored alongside operating system data? Are they stored on the same media?

c. If the data is stored for a long period there are various storage issues and requirements to
examine. For example, will the media be stored in a temperature and humidity controlled
environment? Is it secure, safe from fires, floods, and tampering? Who has access to it?
Will it be stored onsite or offsite?

http://www.gnu.org/software/fileutils/

22 DRDC Valcartier TN 2007-150

d. Will data be stored incrementally or differentially? This may depend on required data
longevity and organizational policy. Is there a preference for incremental or differential
backups? All the tools but DD can be used for incremental or differential backups. How
often is a full system backup (operating system and user data) carried out with respect to
incremental and/or differential backups? These answers will help to determine how
much media is required.

e. Are the users involved in helping determine the lifespan and usefulness of their data? Is
there a policy in place for maintaining user data backups for set periods? For example,
should users be consulted on an intermittent basis to determine if their data and storage
requirements have changed?

f. What is done with users and their data when they are no longer system users? Are the
accounts destroyed and all data saved to CD or DVD or must the accounts be disabled
and data stored and backed up with all the rest of the user data?

g. How often are full backups performed? Are they incremental or differential? Once a
new full backup is performed, existing incremental or differential backups could be
overwritten and reused again for newer incremental or differential backups.

3.2.4.3 Data security requirements

Before carrying out any backup, it is important to determine security requirements that are
necessary for safeguarding data, both during backup and storage. Consider the following:

a. Will data be sent over the network? If so, is it on a trusted network? If not, then perhaps
data should be encrypted; this can be done by piping backup the data stream through SSH
or GPG before it goes out onto the network.

b. Should the data be encrypted, regardless if it is backed up locally or remotely? If so, then
the data should be encrypted from the source system using GPG or other similar tool.

c. If encryption is used, is there a mechanism or resource to help in the management of
encryption keys (i.e. PKI)? Who has access to the keys? Who has the passwords
necessary for encryption and decryption?

d. What network tool should be used for network backups? RSH, SSH, and Netcat can be
used. SSH should be used for encrypting the network stream between computer systems.
RSH and Netcat can be used on trusted networks or if the data stream is already encrypted
via other means (i.e. GPG).

e. What are the current security settings for the machines involved in the backup process
(local sources and remote systems)? What are security settings supposed to be set to?
Can unauthorized users or systems gain access to either the source and/or remote systems
while backups are being performed?

f. Can the backup tool support output/input piping? This may be required, depending on
the type of backup to be done, including compression and encryption requirements as

http://www.gnu.org/software/fileutils/
http://www.openssh.com/
http://www.gnupg.org/
http://www.gnupg.org/
http://www.openssh.com/
http://netcat.sourceforge.net/
http://www.openssh.com/
http://netcat.sourceforge.net/
http://www.gnupg.org/

DRDC Valcartier TN 2007-150 23

well as data backup location (local or remote backup system). Tar, Cpio, Dump, and DD
all support piping. Advanced piping capability can be achieved through scripts.

g. Does the backup user have the necessary rights and permissions to backup all system and
user data? Does that user have permissions to send and receive backup data streams over
the network from/to remote systems?

3.2.4.4 Size requirements

It is important to determine the various size requirements of the data before performing any
backup. Consider the following:

a. Is there enough backup media available for the backup to complete correctly?

b. Is the backup going to require multiple volumes? If the backup cannot be stored onto a
single backup media will the tool require multivolume capability? DD can be made
multivolume-capable using scripts.

c. Is backup space a concern? Does the backup device support hardware compression? If
space is a concern and the backup device does not support hardware compression then
through piping any of the backup tools can be made to send the backup stream through
Gzip or Bzip2 for compression before redirecting the data stream to the backup device.

d. Large datasets such as operating systems or databases should be backed up using Dump
or DD because they are much faster than the other tools. DD is efficient if the device
(partition) is more full than empty because it copies all bits from that specified device.

e. Small datasets and user data can be easily backed up using Cpio, Tar, or Dump. If there
are no constraints such as locked files, special file attributes, etc., then Cpio and Tar may
be more appropriate then Dump. However, larger datasets should use Dump wherever
possible.

3.2.4.5 Data accuracy and relevancy

It is important to determine how accurate the data to be backed up must be prior to performing
any backup. Consider the following:

a. Is the exactness of the data important? Must if be exactly as it appeared on disk? If so
then DD should be used to acquire a bit-copy image.

b. Are raw partitions to be backed up? If so, raw partitions must be bit-copied to ensure
accuracy as there is no recognizable filesystem on them; DD should be used for such a
situation.

c. Are the filesystems too large to be backed up to one media? If so, then the backup should
be done using a multivolume capable tool or script. Furthermore, the multivolume
backup should contain all the data from that specific filesystem.

http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/
http://www.gzip.org/
http://www.bzip.org/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/tar/
http://dump.sourceforge.net/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/tar/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/

24 DRDC Valcartier TN 2007-150

d. Does the backup device support CRC or error checking when writing data? When
reading data? Can the backup tool perform CRC or error checking? Can it deal with
errors and if so, how? How much data will be lost if bad blocks are found on the media.

e. Does the backed up data contain all the same filesystem attributes as the original data?
Does the tool understand how to treat extended filesystem attributes?

f. Can the backup tool accept user-provided input for determining which files to backup?

g. If disk exactness is not necessary then the tools Dump, Tar, or Cpio can be used.

3.2.4.6 Speed and bandwidth

It is important to determine the network speed, amount of time available and required by the tool,
and required network bandwidth. Time constraints will also be a determining factor in
determining which backup utility to use. Consider the following:

a. Tar and Cpio are very fast when backing up small to medium-sized datasets. Dump is
very fast for medium to large-sized datasets. DD is not fast because it must copy every
bit of data from a partition or raw device.

b. How much network bandwidth is available? Does it decrease during the day and increase
at night or on weekends? If so, then backups should be scheduled when network
bandwidth is at highest.

c. If backups must be performed during periods of high network utilization, then data
compression tools can be used to help reduce the amount of required network bandwidth.
The data stream can be compressed using SSH, Gzip, Zip, or Bzip2 before being sent and
decompressed at the remote system.

d. If DD must be used then it will typically require more network transmission time as bit-
copies are larger than their counterpart backup types. Thus, DD-based backups should be
compressed and backed up during periods of low network utilization.

e. What is the read/write speed of the archival media and/or device? This could be the
backup process’ bottleneck. Spreading the backup from multiple partitions/filesystems
across multiple backup devices (local or remote) could significantly speed up the backup.
However, this is not a useful option for multivolume backups; instead, it is better suited
for simultaneously backing up multiple datasets.

f. Local backup devices are usually faster than remote devices and using multiple backup
devices simultaneously for large datasets from different partitions is faster than using a
single backup device, whether local or remote.

g. SCSI devices are generally faster than IDE devices and are therefore highly suggested.

http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.openssh.com/
http://www.gzip.org/
http://www.bzip.org/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/

DRDC Valcartier TN 2007-150 25

3.2.4.7 Tool summary

It is important to determine the capabilities of the various tools examined within this section. The
following provides a brief summary for these tools:

a. Will data be sent over the network for backing up to a remote system? If so, then RSH,
SSH, and Netcat can be used for sending and receiving network data.

b. Is the backup to be multivolume? If so, then Tar, Cpio, and Dump can be used. DD can
only be made multivolume capable through scripts.

c. Is data encryption required? If so, then GPG can be used.

d. Is network encryption required? If so, then GPG or SSH can be used.

e. Is data compression required? If so, then Gzip, Zip, or Bzip2 can be used.

f. Is network compression required? If so, then SSH, Gzip, Zip, or Bzip2 can be used.

g. Is piping required? If so, then Tar, Cpio, Dump, and DD can be piped into any and all of
these programs: RSH, Zip, SSH, Netcat, GPG, Gzip, and Bzip2.

h. Is error checking required? If so, then Tar, Cpio, and Dump support some form of error
checking. DD can perform error checking using scripts.

i. Is the operating system to be backed up? If so, Dump or DD should be used.

j. Are user and application data to backed up? If so, then Tar, Cpio, or Dump can be used.

k. Is the dataset large? Then Dump or DD should be used.

l. Is the dataset small? Then Tar or Cpio should be used.

m. Are incremental or differential backup required? If so, then Tar, Cpio, or Dump can be
used.

n. Is error checking is required? Tar, Cpio, or Dump perform some form of error checking.

o. Are there locked files? Are there volatile files? If so, then Dump should be able to
handle them.

p. Are applications and user data in use? Tar, Cpio, or Dump should be able to handle this.

3.2.4.8 Resource availability

It is important to determine the availability of various backup resources prior to performing any
backup-related action. This will help to better plan and schedule resources. Consider the
following:

http://www.openssh.com/
http://netcat.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnupg.org/
http://www.gnupg.org/
http://www.openssh.com/
http://www.gzip.org/
http://www.bzip.org/
http://www.openssh.com/
http://www.gzip.org/
http://www.bzip.org/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.openssh.com/
http://netcat.sourceforge.net/
http://www.gnupg.org/
http://www.gzip.org/
http://www.bzip.org/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/

26 DRDC Valcartier TN 2007-150

a. Are centralized backup servers available? If so, a backup server can be used to centralize
and facilitate backups from one or more systems. However, the more systems that stream
data to a centralized system at the same time will cause a network bandwidth slowdown.

b. Does the centralized system have more than one backup device? If so, then more than
one system can backup its data at the same time. However, performing multiple backups
and/or restorations at the same time may be slower and more tedious to carry out.

c. Is the backup to occur over the network onto a remote system? If so, can the network
support the backup system’s required network bandwidth? If not, then multiple network
adapters with different network connections will be needed to handle the network load.

d. Are spare backup systems and devices always available? This is important if a backup
fails due to hardware. Having extra remote systems (if they are used) and extra backup
devices will facilitate and speed up the backup process should a hardware failure occur.

e. Is there enough spare media? Every so often media is found to be defective, even new
media.

f. Is the amount of data to be backed up very large? If so, then it may be more appropriate
to backup the system’s various filesystems simultaneously onto multiple backup devices
(local and/or remote devices) to speed up the process.

g. Are backup operators available to intervene if backups should fail or require a specific
action to be taken? This is unlikely to be found in small organizations; however, large
organizations often have backup operators 24x7.

h. Are the archival devices capable of handling multivolume backups? Robotic tape
libraries can handle multivolume backups. If the device is not a tape library then a
multivolume backup can be performed using scripts that divide a backup among multiple
backup devices.

3.2.4.9 Backup schedules

It is important to determine when backups can be scheduled before proceeding with any backup-
related action. Consider the following:

a. When are the systems to be backed up? Are they to be done at night, during the day, or
on weekends? Backups should be done when all necessary resources are available.

b. Are network resources available 24x7 for remote backups? Is there more bandwidth
available on weekends and at night? If so, then backups should be scheduled for these
times.

c. Are backups planned to coincide with increased network bandwidth availability? If
backups are to be performed over the network and there are large data transfers to occur
between one or more systems to a backup server, then backups should be carried out
when network activity is low.

DRDC Valcartier TN 2007-150 27

d. Do actively used user files and applications affect backups? If so, then backups of user
files and applications should occur when the users have logged off. However, if in use
files and applications do not affect backups then they can be scheduled for any time.

e. Do certain operating system services and/or applications interfere with the backup
process? If so, then a schedule should be made for when they can be disabled so that the
operating system can be backed up. If they do not interfere, then they can be backed up
at any time.

f. Are certain key files or data locked or unavailable? If the backup can continue without
those files then the backup should be made when ever possible. However, if the files are
required for a successful backup and the tools Dump or DD are not able to acquire them
then a time should be scheduled to offline the system for backup using a rescue or Live
CD.

g. How will backups be scheduled and executed? If they are using the system’s scheduler
then backups can be automated. If they are executed from the command line then a
backup operator will be required. In either instance, scripts can be used for automation.

3.3 Filesystem checking for backups and data restoration

3.3.1 Filesystems

All filesystems, no matter how robust, modern, or technologically savvy are all at risk for data
loss and/or corruption. The most likely time for this to occur is during disk data writes that
simultaneously occur with a power outage or fluctuation. Although modern filesystems are able
to reduce this danger by incorporating filesystem journaling, the risk is always present. In
addition, unrecoverable hardware errors and kernel panics may also be a likely culprit. This
section therefore examines various filesystem-checking tasks that should be performed prior to
undertaking any backup-related action.

3.3.2 Issues

Filesystem checking, although very important for backups are equally important for data
restoration. Restoring files from a good backup to a damaged filesystem could result in the
overwriting of existing files or even further corrupt the filesystem. Similarly, a corrupt backup
due to filesystem damage will likely result in missing files upon restoration, assuming that the
archive is not corrupt because of the damaged filesystem. Some readers may assume that these
issues are exaggerated; however, a simple lookup on the web for filesystem errors with respect to
backups and restoration will yield much useful information.

3.3.3 Periodic checks

Filesystems must be checked periodically; even the simplest filesystem inconsistency can cause
file damage. It is also possible that severely damaged filesystems may be missing files or they
may become inaccessible due to damaged permissions and/or ACL’s. The only way to verify the

http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/

28 DRDC Valcartier TN 2007-150

status of a filesystem and its files is to perform a filesystem check. Linux provides the necessary
tools for all of its supported filesystem formats, the most notable of which is Fsck. However,
certain filesystems are more sensitive than others are. For example, Ext2 is far more sensitive to
power outages and incomplete data writes as compared to its modern enhancement, the Ext3
filesystem. Although similar, Ext3 employs a journaling mechanism that ensures safe data writes
resulting in a more consistent filesystem.

In addition, certain backup tools are more sensitive to filesystem errors than others are. Dump
and Restore are particularly sensitive as they require (Dump) and recreate (Restore) filesystem
data structures. These data structures are stored using filesystem i-nodes and damage to them can
result in damaged or inconsistent backups. It is also possible for backups to crash and result in
incomplete archives due to filesystem errors; this can occur for all the backup tools (except DD).
However, Tar and Cpio are generally not as severely affected by errors as Dump and Restore are.
Nevertheless, all these tools can suffer from filesystem inconsistencies. DD, however, is not
susceptible to filesystem errors as it will simply copy over all filesystem errors to its image file
that can when mounted (DD images can be mounted) be checked.

3.3.4 Repairs

The Linux operating system supports and provides all of the necessary tools for checking and
repairing a variety of filesystem formats and all but the most troublesome errors can be found and
fixed. It provides the Fsck utility for performing filesystem reparation. Although filesystem
checking is important, there are certain dos and don’ts. The most important don’t is that a
filesystem should never be repaired when it is mounted, even if it is mounted in read-only mode.
Even when a read-only filesystem is mounted, buffered changes made to it are likely to result in a
more serious problem than that which was fixed if the disk is remounted as read/write.
Filesystems can be checked (but not repaired) when they are mounted; however, this can be
dangerous, depending on the filesystem type and the level of disk or partition activity and
underlying damage. It is always safest to check a filesystem when it is mounted read-only and it
is always safest to repair a filesystem when it is offline. DD image files can also be checked and
repaired just as with any other valid partition or filesystem and the same basic rules about
checking and repairing apply. Severely damaged filesystems (if a backup is not available) may
require forensic tool recovery to reconstruct damaged data and/or filesystem structures. Finally,
the root filesystem should always be checked and repaired in single-user mode (during system
start-up) or from a rescue or Live CD. Under no circumstances should the root filesystem be
repaired while the operating system is active and operational.

3.3.5 Scheduling

It is important that time be made periodically for checking a system’s filesystem(s); often the best
time to do this is at system start-up. However, some systems, particularly mission critical C2
systems may have operational requirements that make taking them offline difficult. Nevertheless,
periodic maintenance is required even on these systems. If time cannot be periodically scheduled
for certain systems then filesystem checks and repairs should be made before performing other
system maintenance tasks such as updating, upgrading, and/or replacing/adding hardware.
Although certain filesystem formats are almost “impossible” to corrupt (i.e. XFS) due to the
many inherent safeguards they incorporate they should still be checked as there is no such thing

http://www.linux.org/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/
http://www.linux.org/
http://www.gnu.org/software/fileutils/
http://oss.sgi.com/projects/xfs/

DRDC Valcartier TN 2007-150 29

as a perfectly stable filesystem since they are always changing and in a constant state of flux. In
addition, if it is not already done, it is important to incorporate filesystem checking into
organizational policy regarding system maintenance. Finally, it is better to have certain systems
or services unavailable for brief periods rather than have an inconsistent or corrupt backup or
restoration when it really matters.

3.3.6 Filesystem formats

Linux supports multiple filesystems formats and provides the necessary tools for fixing them.
However, how well a given tool supports, checks, and fixes one or more filesystem errors will
depend largely on the maturity of the tool and its underlying filesystem. All of the major
filesystems commonly used by Linux are fully supported. In addition, Linux supports the
mounting of loopback virtual filesystems (i.e. DD image files, ISO files, etc.).

3.3.7 Bad blocks

Although much attention is paid to the filesystem, it is also important to check a disk drive’s
surface for physical errors. Disk drives can suffer from the effects of excessive wear and tear due
to the reading and writing of the disk’s heads. This wear and tear can result in the formation of
bad blocks. These bad blocks are damaged physical disk sectors that contain actual information;
however, that information may or may not be useful just as it may or may not reside on unused
disk space. What information is contained within a disk block will depend on where it resides
with respect to the underlying filesystem. Although a few bad blocks by themselves will not
result in an inconsistent filesystem, they can cause files to be damaged, missing, or corrupt. The
Linux operating system provides a tool to check for bad blocks, repair physical errors, and move
filesystem data and files to good blocks. The program provided by Linux is the Badblocks disk-
checking program.

It is important to perform bad block checking before any errors become disruptive to the
operating system or the users. However, bad block checking can only be done on unmounted
filesystems, and in the case of the root filesystem, it can only be done from a rescue or Live CD.
This can be further complicated by the operational requirements of C2 computer systems.
Nevertheless, time should always be made at periodic intervals to perform bad block checking; a
good time will be to perform this task when performing other system maintenance-related tasks.
However, the type of disk drive used will dictate when and how often checks should be made.
Some advanced SCSI disks offer the ability to dynamically check and repair bad blocks as soon
as they are found; however, this feature is only available a select few disk drives.

3.4 Restoration considerations

3.4.1 Plan development

A successful restoration plan should be based largely on the backup plan (developed in Section
3.2.1) that should already have examined the different facets involved in backing up computer
systems. These facets include organizational and operational policy and requirements, as well as
the operating system capabilities and requirements. How a restoration unfolds is largely

http://www.linux.org/
http://www.linux.org/
http://www.linux.org/
http://www.gnu.org/software/fileutils/
http://www.linux.org/
http://www.linux.org/

30 DRDC Valcartier TN 2007-150

dependent on how the backup itself is done; this can include backup devices, the use of
centralized backup servers, the type of media and filesystems, skipped files, network paths, etc.
Restorations are important to recover from data loss, corruption, or operating system error;
however, a system that improperly backed up may cause restoration failure and the files may be
permanently lost. Consider that if a particular backup is difficult to perform due to various
reasons then it is more likely that the restoration will also be difficult to perform; conversely, a
backup done with ease should be also be easily restored. A restoration, as with any backup, can
go awry for different reasons, the majority of which can be mitigated or altogether removed if
adequately planned. The previous sections, including the following one will help for planning a
successful restoration.

3.4.2 Tools

The tools used for data restoration are the same ones used for performing data backups. Tar is
fully capable of creating and archiving data into a Tar-based archive; it can also extract data from
the archive. It is the same for Cpio-based archives. Dump-based archives are restored using the
Restore tool; it is a command-line and interactive tool used for extracting files from a Dump
archive. Finally, DD-based images can be restored using DD by either bit-copying the data back
to a raw partition or device, or using the mount command its contents can be made accessible as
with any other filesystem. All of these tools are able to read and write from disk and tape-based
media.

3.4.3 Various restoration factors

3.4.3.1 Resource allocation and assurance

It is important prior to any restoration that all required resources are made available and allocated
(if immediately necessary). For example, resources could be centralized backup servers,
additional disk or tape drives, the backup media itself, or personnel such as a backup operator. It
is important that resources already be available before the restoration is to commence as
unforeseen delays will inevitably lead to increased down time for systems and mission critical
systems can only be taken offline for short periods. For example, if a disk fails on a mission
critical server while a restoration is underway then a spare disk must be available and someone
must be present in order to intervene and to take necessary corrective measures.

Network paths, centralized servers, remote backup devices, etc., should also be available when
required, and if necessary, tested beforehand to determine their functional status. In addition,
spare hardware should always be on hand in order to mitigate and resolve hardware-based
problems as they arise. Finally, it is important to have a rescue and Live CD available so that
should the operating system of the system being restored fail then the restoration can nevertheless
continue with minimal interruption.

3.4.3.2 Scripts

All scripts used during the backup phase should also be made available for the restoration
process. In addition, most scripts, when written for backing up one or more systems using one or

http://www.gnu.org/software/tar/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://dump.sourceforge.net/
http://www.gnu.org/software/fileutils/
http://www.gnu.org/software/fileutils/

DRDC Valcartier TN 2007-150 31

more tools will generally require a rewrite to be able to restore data from media using said tools.
The restoration scripts, if any, should perform the inverse function of the backup script(s).

3.4.3.3 Data safeguarding

All backup media should be safeguarded and stored in cool environments as stated by the
manufacturer’s long-term storage recommendations. Generally, this will require controlled
environments that have the appropriate mixture of temperature, humidity, and stored away from
strong magnetic sources. In addition, the media should be stored according to its value. High-
value data should be stored nearby but off-site, possibly in fireproof or fire-resistant storage
containers, lockers, or safes. Furthermore, the media should always be secured from theft and
tampering. It is also important to consider placing spare equipment such as backup devices and
disks in lockup so that when and if they are required it is certain that they will be there.

3.4.3.4 Media testing and device diagnostics

All backup media should be tested periodically to ensure an error free state. In so doing, this will
enable the media to be used at any time without worrying about added complications during data
restoration. However, exactly how the media should be tested will depend on a variety of factors.
For example, the type of media employed used and the employed archive format will be
important determining factors. In addition, various tools can be used; DD can always be used on
tapes to perform tape dumps, regardless of the archive type. The archiving tool, of course, can
always be used on its respective archive file. If the archives are stored on disk, then other tools
such as Fsck and Badblocks can be used.

Obviously, the more media there is to test the longer testing will take. Testing time, however, can
be reduced by using scripts, and this can be amplified by using automated tape libraries that can
be controlled by a simple program (i.e. Mtx) via a script. In addition, disk checking can also be
automated using scripts. However, an important to question to answer is how often should the
media be tested? Another is should the entire media be tested or individual archives? Often,
testing once per year will suffice. Testing can often be done by dumping a table of contents of
the archives; this is the default most tools, although full data extraction is always a possibility as
well. If tapes are used as the main form of media, then they should be re-tensioned periodically
to ensure that the tapes do not stick.

It is also important to test the tape drives, disk controllers, and disks (if media is on magnetic
disk) using standardized procedures and best practices; often, the devices’ manufacturers may
provide useful insight and tips. It is important to implement an organizational policy if one is not
already in place. Powerful and simple diagnostic tools are available for Linux (PC Doctor for
Linux) and some standard tools come bundled with it for testing various devices and components.

3.4.3.5 Alternate methods of restoration

It is important to ensure, as with backups, that the restoration plan examines and outlines various
alternative methods for restoring data back to the required system(s). As with backups, it can
happen that backup devices or network paths become unavailable and another method for backing
up the system(s) must be found. It is the same with data restoration; unforeseen and

http://www.gnu.org/software/fileutils/
http://sourceforge.net/projects/mtx
http://www.linux.org/
http://www.pc-doctor.com/pcd_linux.php?language=english
http://www.pc-doctor.com/pcd_linux.php?language=english

32 DRDC Valcartier TN 2007-150

uncontrollable circumstances can cause data restorations to become very complex and
cumbersome, and when being performed against mission critical systems, time is essential. For
example, if certain disks or filesystems cannot be brought offline on the system marked for
restoration, then data can be restored to an alternative directory (on the system or on the network
somewhere else and shared) and copied over at a more appropriate time. Alternatively, if
network restorations are performed but the network becomes inoperable then it is important that
the backup device and media can be easily connected and reconfigured for the system that is to
have its data restored.

3.4.3.6 Procedure testing

It is very important to test all restoration procedures before ever requiring them. Testing should
be done in a laboratory or other controlled environment where different tests and scenarios can be
experimented on without affecting the operational network. Procedures should be tested to
determine their suitability and adaptability to changing contextual situations in order to
understand how to improve upon them (when and where necessary) so that they can be made to
accommodate multiple uses. In addition, by testing them it becomes possible to understand how
they will behave due to varying circumstances caused by, for example, a lack of system or human
resources, device failure, and network unavailability. However, not all procedures are equally
useful nor are they equally applicable in all circumstances. For instance, backed up system data
that is stored on tape that is no longer accessible due to a failed local SCSI controller will have to
be restored over the network. Another example would be a system’s main operating system and
boot disk that has failed. It will have to be replaced with a spare disk and its data reloaded from
backup; this will require booting from a rescue or Live CD. In the latter example, procedures
should already be in place for how to use alternative boot devices and how to restore data using
these devices. Regardless of the varying circumstances, it is important that the backup media
used can be recovered using the various procedures and these procedures should be found within
the restoration plan. The most difficult issue about a restoration is adapting to varying problems
and circumstances when time is running out for a mission critical system; a set of procedures will
likely help to better adjust to such circumstances.

3.4.3.7 System and filesystem availability

Depending on the type of data to be restored it may be possible to restore it directly back to the
filesystem(s) without interfering with the system’s ongoing operations. However, this will
depend greatly on the type of data to be restored. Generally, applications, services, and user data
can be restored without ever having to take the system offline. Certain applications or services
may require being taken offline temporarily while their data are restored. In addition, depending
on the type and amount of user data to be restored it may be necessary for those users to logoff
while their data is restored. It is also entirely possible that all the users may have to logoff,
depending on how much user data is to be restored and whether it will affect some, most, or all of
them. If the backup contains operating system data, however, then it is possible that the system
will have to be brought offline in order to conduct a restoration; this too will depend on whether
the backup must overwrite system-locked files or other key operating system files that must not
be changed while the system is operational. Thus, a determining factor in whether the system or
filesystem is to be taken offline will depend greatly on the type of data to be restored.

DRDC Valcartier TN 2007-150 33

If a backup was done using DD then the filesystem must be unmounted prior to restoring its data,
or it can be mounted using the system’s loopback device feature and mounted as a virtual
filesystem and accessed from there. If the data was backed up using Dump then the filesystem
can usually remain mounted in so long as the files to be overwritten are not in use. Tar and Cpio-
based backups can generally be restored without problem in so long as the files they overwrite are
also not in use. In certain cases, an alternative to using another boot device for performing a
restoration, the system can be brought into single-user mode and restored from there. However, if
the data resides over the network then procedures should exist for how to access the network and
data from within single-user mode. In certain cases, where specific files must be restored along
with the rest of the restoration that cannot be executed because certain files cannot be overwritten
when the system is active, a rescue or Live CD will have to be used. Finally, most restorations
can be made to filesystems while they are actively mounted; however, this will depend on both
the type of backup and data to be restored.

3.4.3.8 Operating system restoration

Restoration of an operating system’s filesystem(s) will generally require booting from an
alternate operating system such as those found on a rescue or Live CD so that operating system-
specific files can be overwritten without crashing the system or resulting in data loss. Replacing
existing system binaries and libraries while the system is active could result in system instability
or inconsistencies. Other data such as configuration files can usually be restored while the system
is active but only in so long as they are not actively opened for modification. Restoring device
files will be depend on whether the device(s) are currently in use; if so, then the devices must be
disabled or the system must be booted from an alternate device and then restored from media. It
is very rare to ever have to restore device files from media as in most cases the Linux operating
system can easily recreate them automatically at boot-up (using the same mechanisms responsible
for operating system hardware reconfigurations).

In general, most operating system restorations can be done without ever having to reboot the
system using an alternate device or brought into single-user mode as most of the operating
system’s files can be replaced without ever affecting the system. The only time this is necessary
is when making changes to key system libraries, kernel files, and devices where system
inconsistencies will likely cause a kernel panic or a total system crash rendering the operating
system unusable or too unstable for use. In many cases, operating system backups can be
restored to an alternate directory on the system and when applications and services can be
disabled, the files can be replaced at a more appropriate time; this is the most suggested form for
performing a restoration where the system’s files cannot be immediately overwritten. Once all
but the system’s locked files have been overwritten or replaced, the system can be briefly
rebooted and the locked files moved to their locations from the restoration made to alternate
directory.

3.4.3.9 Users and applications

User-based data can generally be restored at any time; the only time this may be problematic is
when a currently opened file is undergoing modification by the user and/or application or service.
In such a case, the file cannot be replaced without causing data loss to the file. In such cases, it is
normal for the system administrator to request that affected users be logged off the system by a

http://www.gnu.org/software/fileutils/
http://dump.sourceforge.net/
http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/

34 DRDC Valcartier TN 2007-150

given time so that the restoration can continue. In cases where the user cannot logoff from the
system the data can always be restored to an alternate directory and then copied over to the
appropriate location at a more appropriate time. If necessary, however, the system administrator
can forcibly logoff a user and shut down his applications and open files; however, this should be
left as a last resort to users in a state of non-compliance.

3.4.3.10 Databases

Database applications should always be shut down before restoring any database file. Unlike
many other applications, database applications are data-specific and cannot generally be left
operational even if the databases are currently unmounted; even unmounted database on quiescent
systems can result in data loss, corruption, or database application crash if a database file is
restored while the application is running. Database files do not necessarily require mounting in
order to be considered as actively used by the application. In part, this can be attributed to the
fact that database applications, generally initialized by scripts, may maintain journaling and
buffered information about its files, even if they are unmounted. However, this will vary from
application to application and as such, it is important to be somewhat familiar with the database
application and how it works with respect to its database files. Reading the application’s user and
administrator manuals may provide further clarification.

3.4.3.11 File attributes

Not all backup tools are capable of storing extended file attributes. Depending on the tool used
and the data backed up, the backup archive may or may not have saved the files’ attributes.
Furthermore, during restoration, it is important to use the correct restoration tool that is able
extract and restore the various extended file attributes. The most common type of extended
attribute is the ACL, and if incorrectly restored or backed up could result in the administrator
having to manually recreating all the missing ACL’s, a very time consuming process. Tar and
Cpio-based backups do not store or restore extended file and filesystem attributes.

3.4.3.12 Security, compression, and networking

If security is a concern, then it is important that the same security measures be taken during
restoration as was done during the backup. If certain applications such as SSH or GPG were used
during the backup then they will also have to be used during the restoration in order to secure the
network and/or data stream. Similarly, if the tools SSH, RSH or Netcat were used for the backup
then they too should be used for the restoration. If encryption was used, then the passwords used
must be available for data decryption. Furthermore, if administrative accounts are used for the
backup, then the same administrative account will be required for a successful restoration.
Access to system directories and direct disk access via raw devices also requires administrative
access. Just as with data backups, certain permissions will be required in order to write to various
parts of the system and to overwrite existing data. For most backup and restoration purposes, an
administrative account will be required. In addition, various security mechanisms may be
required in order to perform an over-the-network restoration; these types of restorations should
generally be restricted to administrative accounts. The media should not be accessible to just
anyone; only authorized personnel should be able to use and access backup media. Finally, if

http://www.gnu.org/software/tar/
http://www.gnu.org/software/cpio/
http://www.openssh.com/
http://www.gnupg.org/
http://www.openssh.com/
http://netcat.sourceforge.net/

DRDC Valcartier TN 2007-150 35

compression was used during the backup then the same tools will also be needed in order to
decompress the network or data stream.

3.4.3.13 Multivolume restoration

Multivolume backups will require multivolume restorations. It is therefore important that any
backup script(s) used also be capable of handling multivolume restorations otherwise user
intervention will be required in order to perform these restorations. It is also a good notion to
place these scripts onto any alternate boot devices so that they are readily available.

3.5 Miscellaneous

3.5.1 Errors

Errors can and always will occur at any time; sometimes predictably and other times randomly.
Some errors are caused by human intervention (or lack of it) and others by software and/or
hardware errors. An exhaustive list cannot be provided here since there are so many potential
types of errors that can occur that a list could not possibly cover them all. Nevertheless, both the
backup and restoration process should always be performed by someone knowledgeable of the
computer system, the operating system, the applications and services used, the users, and the
network layout – the system administrator. This individual is generally best suited to performing
these vital tasks and functions.

In addition, the tools used for backing up and restoring data should be capable of dealing with and
handling errors various types of errors. Unfortunately, most of them can only handle the most
basic types of errors and therefore human intervention is usually required at one point or another
when performing complex backups or restorations. Only very complex and costly backup tools
can deal with errors that are more complex; however, no single tool could ever deal with all of the
various problems that could potentially be encountered.

Errors can also occur in the backup media, not just during the actual phase of the backup or
restoration. Media errors can be encountered when periodic media tests are conducted. The tools
examined thus far can generally deal with bad blocks on the backup media. When these errors
are found in the backup’s archives, the tools can be used to make reasonable efforts to extract the
data and if necessary skip to the next available backup file. In the worst case, DD can always be
used to forcibly extract data from the backup media. However, portions of missing data from the
archive(s) due to bad blocks may result in a partial or complete loss of data. Different tools will
handle damaged archives differently. However, in general, all the tools examined are all able to
deal with damaged archives and skip on to the next valid portion of the archive.

3.5.2 Testing

Before actually proceeding with any backup or restoration, it is important that both sets of
procedures be adequately tested ahead of time in order to ascertain the applicability and efficacy
of the procedures to adequately safeguard the data and the systems. In addition, the backup and
restoration procedures should be tested and verified in order to determine that they do in fact

http://www.gnu.org/software/fileutils/

36 DRDC Valcartier TN 2007-150

work within the organization’s operational environments and conform to policy. The procedures
should also be periodically retested to verify that they continue to conform to the operational
environment and policy as changes can be made to the environment without the administrator’s
knowledge, input, or consent, and as such, the procedures as they stand may no longer be suitable.
Testing should always be done in a controlled laboratory or environment where changes can be
made to the systems and network without affecting the operational network. However, once the
tests and procedures have been tested and are considered ready for use, they should then be
briefly tested on the operational network. The operational network test should consist of a short
series of trial runs to determine if several of the most likely to be used procedures will work under
varying conditions. However, this can only be done if the operational environment and
organizational policy permit this and the affected systems can be taken offline, otherwise,
laboratory-based testing will suffice. Once most or all of the tests are conclusive then the
procedures can be rolled out into the operational environment.

3.6 Summary

As examined, performing data backups and restorations can be both a cumbersome and time-
consuming process. There are many issues and sources of potential complication that must be
analyzed and contended with before actually implementing and proceeding with any specific
backup or restoration. After having read this section the reader should be ready to develop his
own backup and restoration methodology. However, it is important to bear in mind that any
methodology that is developed should always be specific to the organization’s requirements,
policies, computer and operating systems.

In attempting to determine the necessary backup and restoration methodology, it is possible that
much trial and error will be required in order to determine the best overall approach.
Furthermore, until such time that a definitive backup and restoration policy and methodology are
in place it may make more sense to use more than one type of backup tool and media until an
appropriate combination is found that works and fits within the operational context as defined by
the various requirements. In addition, the type of backup tool, the media to be used, as well as the
type of data, and its size will largely determine the overall methodology and approach that will be
used and implemented.

DRDC Valcartier TN 2007-150 37

4. Methodology II – system maintenance steps and
procedures

4.1 Objective

The objective of this section is to examine the various issues that surround operating system
maintenance, whether it is for the update, upgrade, or manual system maintenance of an operating
system. There are many valid reasons why operating system maintenance should be performed;
for example, to fix bugs, improve performance, add newer functionality and improve system
services, increase system stability, or prepare a system for an operating system hardware
reconfiguration (or hardware migration). Fundamentally, this report’s objective is to help prepare
the system administrator with the necessary information required to adequately maintain
computer systems so that they can be updated, either for its own sake or so they can undergo a
hardware reconfiguration or migration (see reports [2, 3]) in order to accommodate for changes in
hardware.

4.2 Introduction

Before any system maintenance-related action can be undertaken many issues will require a
thorough examination by both the system administrator and support personnel who oversee the
various C2 systems. Both this report and section take a more global overview of system
maintenance as compared to Section 3 where precise actions and commands were examined in-
depth. Throughout this section, a highly detailed discussion is not necessary as the proposed
concepts are of a higher level and thus more vague and abstract. This in turns causes the reader to
maintain a higher-level perspective that will help to apply the proposed methodology to various
environments and organizational policies. In addition, it was determined that providing detailed
commands and actions for this section could to lead to confusion instead of clarification. Linux
distributions differ by varying amounts, thus attempting to write a lower-level system
maintenance methodology that encompassed them all would be too complex and technically
challenging to write in a Technical Note. However, there are enough similarities among them
that a higher-level perspective could be examined.

Periodic and regular system maintenance is necessary to ensure that a computer operating system
is both easier to maintain and administrate over the long-term. In addition, a well-maintained
operating system will better adapt to periodic hardware changes facilitating reconfigurations and
migrations. Furthermore, regular system maintenance, whether through regular updates,
upgrades, code patching and/or manual recompilation/reinstallation all form a part of routine
system maintenance necessary for the long-term smooth functioning of any operating system.
The type of system maintenance that the reader will employ will largely depend on both the age
and type of operating system in use.

This section provides a series of actionable overviews that can be taken up by system
administrators and test users alike in order to develop a coherent update/upgrade methodology.
Each specific organization is unique such that no simple cut-and-paste methodology can be
applied at all times. Thus, this section focuses more on what should be done rather than how it is

http://www.linux.org/

38 DRDC Valcartier TN 2007-150

done. As such, detailed specific actions are removed from the discussion and left up to the
discretion of qualified individuals who will carryout the various tasks. However, because of the
approach taken throughout this section a higher level of UNIX expertise is required in order to
perform many of the necessary lower-level system maintenance-related tasks. In addition, certain
low-level tools (see Section 2.4.5.3) will be required for carrying out many of the system
administration maintenance-related tasks.

Manual system maintenance, in contrast to updates and upgrades, should only be done on a case-
by-case basis only when necessary. However, the level of expertise required for a thorough
discussion of this topic is far beyond that found herein. By using the aforementioned tools low-
level tool (see Section 2.4.5.3) many problematic issues found both for operating system updates,
upgrades, and manual system maintenance can be resolved by tracking down the root cause of a
problem (i.e. library inconsistency, incompatibility, etc.).

However, it is important to understand that at one point updates and upgrades may no longer be
available (for a variety of reasons) leaving only manual system maintenance as the only method
of maintaining an operating system. Although this is not an easy task, the discussions examined
herein will be of immense when this scenario should occur.

4.3 System maintenance

4.3.1 Reasons for performing system maintenance

There are a variety of valid reasons why system maintenance should be performed regularly (or
periodically), regardless of the maintenance type. The following is non-exhaustive list but it does
cover many of the various issues that are important to this section. Consider the following:

a. Reduce the time required for future maintenance.

b. Decrease the system’s susceptibility to attacks and exploitation through known
vulnerabilities and/or bugs.

c. Potentially fix unknown vulnerabilities and/or bugs.

d. Ensure better hardware support for through newer device drivers and a newer kernel.

e. Improved management of both physical and virtual memory.

f. Provide increased system stability via newer device drivers, and provide enhanced
hardware features and/or capabilities.

g. Through newer kernels provide improved system stability and reliability, new feature
enhancements, increased security, and improved and increased hardware support.

h. Through updates and upgrades, provide newer system features and enhancements.

i. Enable a successful operating system hardware reconfiguration or hardware migration.

http://www.unix.org/

DRDC Valcartier TN 2007-150 39

4.3.2 When and why to perform system maintenance

Before proceeding with system maintenance, in any of its various forms, it is important to
determine why and if various operating system components should or need to be maintained. For
example, if only one application or service requires maintenance then it may be more appropriate
to manually modify the service/application instead of implementing an update or upgrade that
will affect the entire system. Very often deciding on whether or not to carryout a specific course
of action will require an impact assessment to determine what will change and whether the
changes are justified vis-à-vis the amount of changes to be implemented.

Often times for small tasks manual system maintenance may be the preferable course of action.
Certain system components can be easily maintained by manually while others should be done
using updates and upgrades. For example, kernel recompilation using newer source code is not a
difficult process, however, all too often required kernel features are excluded from the
compilation that can potentially cripple the system. As such an update or upgrade may more
appropriate as the kernel has already been configured for specific use with the current operating
system. On the other hand, simple changes such as downloading and installing the latest office
suite should cause no discernable impact on the system as a whole (other than new suite features).
However, each case is different and will be dependent on many factors. Three very important
factors to consider are: 1) are modifications required; 2) are they justified, and 3) if so through
which means.

There are many reasons both in favour and against any particular course of action. It is therefore
highly important to consider both the advantages and disadvantages of any specific course of
action before proceeding with any system maintenance, even before laboratory testing. Doing
otherwise could prove to be a waste of valuable time and resources that could otherwise have
been better spent working on and solving other more pressing system administration-related
issues.

There are many times when system maintenance should be performed and other times when it
should not. The following is non-exhaustive list but does cover many of the various issues that
are important to this section. Consider the following:

a. How difficult is the maintenance to implement? If the maintenance fix is complex or
excessively long to implement then it should be done using a more automated method
such as an update or upgrade.

b. What requires changing? If manual installation of the maintenance fix will cause too
many potential changes, incompatibilities, or inconsistencies then they should be
implemented using an automated method such as an update or upgrade.

c. What requires maintenance? Does the operating system in general require maintenance
or specific components such as the kernel (and its subsystems) or system services and
applications? Updates are often more effective at providing newer kernels and system
components as they are already precompiled for the current platform and distribution.

40 DRDC Valcartier TN 2007-150

d. Is maintenance to be performed against one or more applications and/or libraries? If this
is the case then it is often easier to perform manual system maintenance in so long as the
source code does not need to be modified in any major way.

e. Does the maintenance require source code modification? If too much source code is to be
modified then time might be saved by instead implementing an update or upgrade. On
the other hand if there is only a small amount of source to modify then possibly manual
system maintenance may be the correct choice of action.

f. Is the maintenance necessary to fix one or more specific system bugs? System bugs such
as library or kernel bugs should generally be fixed using updates or upgrades rather than
manually modifying kernel source code in order not to introduce new incompatibilities or
inconsistencies. However, this will depend on the type of bugs and their breadth.

g. If the bugs are application-related, do they cause usability issues? It is important to
consider if it is worth updating or upgrading an application simply to fix a couple of bugs
that cause only minor inconveniences. Sometimes newer applications cause more trouble
than they are worth (i.e. user retraining). It is therefore important to determine the
severity of the bugs before implementing any changes.

h. Will performing maintenance provide any new productivity improvements (i.e. improved
functionality or performance, or both) in applications and services or will it improve the
overall operating system? What type of changes will be made? Are they far reaching or
limited in their scope? Answering these questions will help to determine if the changes
should be carried out.

i. Is maintenance required to fix various security-related concerns? Depending on the
security issue at hand, it may not be necessary to correct, as it may only be applicable to
unused system services/applications. On the other hand, not fixing highly used
services/applications could increase the system’s overall vulnerability.

j. Are new vulnerability and/or other security maintenance fixes available? If they can be
implemented without excessively changing or affecting the system then they can be
implemented using manual system maintenance. If on the other hand the maintenance
fixes are complex to implement or make too many changes (known and unknown) to the
system then it may be more appropriate to use an automated method such as an update or
upgrade.

k. Are the security-related maintenance fixes kernel-related? If so, then it is often best to
directly apply the fix to the source code and recompile the kernel. This can also apply to
binary patches. However, if the level of changes made to the source code is extensive
then it may more appropriate to use an automated method such as an update or upgrade.
In addition, kernel recompilation and option selection can be complex and can result in a
crippled kernel resulting in an unusable system.

l. What are the overall advantages and disadvantages of performing system maintenance?
If the advantages outweigh the disadvantages then the system should be maintained using

DRDC Valcartier TN 2007-150 41

the appropriate maintenance type. However, if there are too many disadvantages using
one maintenance type then another type should be used in its place.

m. It is important to consider when the last maintenance-related changes were made. If the
system is relatively up to date then it may not be necessary or appropriate to make
changes to the system for non-critical maintenance fixes. Sometimes making
maintenance-related changes may cause far more work than is necessary for the level of
maintenance to be provided.

n. Are the maintenance changes critical? If so then they should be implemented unless
there is a good reason not to (i.e. services and/or applications rendered non-functional).
However, if maintenance-related changes are not implemented immediately then when a
more appropriate set is available such as update or upgrade and it does not cause
excessive adverse affects then it should be implemented.

4.3.3 Requirements for system maintenance

Before proceeding with any system maintenance, there are certain requirements that should be
met. No system changes should have been made until these requirements are ascertained. Doing
otherwise may result in an operable system that would have to be restored from backup media.
The following is non-exhaustive list but does cover many of the various issues that are important
to this section. Consider the following:

a. What requires maintenance? Does the operating system require it or do various
components, applications, libraries, and/or other packages require it? Prepare a list
detailing specifically requires maintenance. If enough components require maintenance
then it is likely a good decision to proceed with system maintenance.

b. Determine which type of maintenance is to occur. If only a small number of changes or
modifications must be made to the system then manual system maintenance may be more
appropriate. If many changes are to occur then an update should occur. If updates are no
longer available or certain new technical innovations or fixes are available in the upgrade
then it may be necessary to perform an upgrade.

c. Are all license issues resolved? Has the operating system been re-licensed (this has the
potential to happen) as updating or upgrading to it would cause the current operating
system to fall under the new licenses jurisdiction.

d. If manual system maintenance is to be applied then it is important to determine if any
changes have been made to the software licenses and their corresponding software
packages. Software packages modified by the maintainer’s updates or upgrades are the
maintainer’s legal responsibility. However, software packages that are manually
maintained whose underlying license has changed remains the legal problem of the
customer.

e. Is the test laboratory environment ready for use? Is the test computer’s hardware and
software installed and working? Before changes are ever deployed to the operational

42 DRDC Valcartier TN 2007-150

network they should always be tested and verified on a non-operational network that can
be experimented on.

f. Have system diagnostics been run on the hardware? Diagnostics should be run prior to
performing an update or upgrade as a hardware bug could cause the entire process to
come to a halt and even corrupt the operating system. In addition, certain hardware
configuration checks should be made in order to ascertain that the system is in good
working order including verifying the system’s log files for any hardware-related issues.

g. It is important to verify the system’s logs and determine that there are no outstanding
errors or bugs unless the purpose of maintenance is to fix those specific issues.

h. Has the software and operating systems on the test hardware been tested to determine if
they are functional? Is the operating system in a functional state? A system in proper
working condition is easier to maintain than an unstable system.

i. Have backups been successfully completed? It is important that backups be available as
nay failed attempt at performing system maintenance could require the reloading of
system data from backup media. It is important to ensure that backups are done
periodically for both the laboratory testing facility and the operational network.

j. Are the test users ready for testing the system after system maintenance is performed? If
system maintenance will have a visible impact on the users or the way they work it will
important to test what changes they will experience and whether the changes are more
conducive or a hindrance. If the changes are more of a hindrance then the changes should
be rolled back.

k. Is the system administrator(s) ready to proceed with the system maintenance? Does he
have everything he requires? It is important that the system administrator and his support
staff be ready to proceed with the system maintenance modifications and that all
materials (i.e. update/upgrade media, backups, etc.) are available should they be required.

l. Is the operating system ready to receive an update, upgrade, or manual system
maintenance? Are applications and services disabled? Have users logged off from the
system? It is common practice before performing system maintenance that any
application or service that may be affected be disabled and that users who would be
affected be logged off from the system. In addition, it may be necessary to bring the
system to single-user mode or even boot from special media if performing an update or
upgrade.

The following is non-exhaustive list but it does cover many of the various issues that are
important to this section.

4.4 Maintenance types

Although this section places emphasis on the long-term system maintenance of Linux-based
computer operating systems, other types of system maintenance are equally suitable depending on
the current period from the original deployment of the C2 system. In general, while the various

http://www.linux.org/

DRDC Valcartier TN 2007-150 43

forms of system maintenance achieve the same overall objective, they are accomplished through
different means (i.e. updates, upgrades, code patching, etc.). These various forms of maintenance
can be broken down into three general categories: short-term, medium-term, and long-term
system maintenance. These three forms of system maintenance can be accomplished using any or
all of the various maintenance options provided in [2], although there is likely to be some overlap.

These three maintenance types should help to satisfy the Navy’s key requirement: that a computer
operating system is maintainable for the duration of the C2 system’s lifetime. This lifetime is
likely to be a period of at least 15 years and possibly as long as 25 years. Currently, it is still
uncertain which computer operating system will replace the current C2 operating system aboard
the Halifax-class frigates; however, when they are refitted it is very likely that a Linux-based
operating system will power the new systems.

4.4.1 Short-term

Short-term maintenance is generally the easiest and simplest type to perform on a given Linux
operating system. The operating system is generally maintained using updates provided by the
distribution’s maintainer. Commercially supported Linux operating systems can easily expect
updates to be available for at least the first 2 to 3 years of the system’s life. However, different
support contracts with a given vendor may allow for extended periods of operating system
updates for possibly as long as 5 years. Updates are normally provided for the duration of the
support period of the operating system in so long as the distribution’s maintainer has not switched
to a newer version and has ceased support for older operating systems.

Most commercial distributions are able to directly download and install updates, as they become
available using sophisticated GUI-based applications. Support contracts may also stipulate that
instead updates be to be provided on physical such as quarterly update CD’s.

Updates do not generally cause large operating system disturbances. Instead, they usually
provide bug fixes and software patches, but can also provide improved application and system
reliability and performance, and less commonly provide improved application functionality.
Generally, most updates are transparent to the end users, although from time to time it can occur
that certain applications may change slightly from update to another. Normally, however, this
should pose no problem to the end users or to system configuration files. In addition, currently
supported applications and libraries should not be affected by maintainer-based updates, as they
should already have been thoroughly tested by the maintainer. Only rarely do updates upset the
balance of system libraries, although when it does happen manual system maintenance may be
required to rectify certain inevitable problems. These problems can often be fixed by creating
new configuration environments4 for the affected applications and libraries.

Updates periodically include newer kernels, although drastic changes in kernels (i.e. switching
from kernel 2.4.x to 2.6.x) are indeed a rare occurrence. Minor kernel changes do not normally

4 A configuration environment could be one of several things. Normally it is when an application and its
libraries are moved to another location on the system and a new system and/or user configuration is created
for it and is independent of the rest of the system. Another type is creating a chroot-based environment
where the application runs inside of another more restricted environment. Unfortunately, these
environments are complex to setup and configure and may not always be an appropriate solution.

http://www.linux.org/
http://www.linux.org/
http://www.linux.org/

44 DRDC Valcartier TN 2007-150

result in changes to system calls and which therefore have no tangible impact on the system’s
existing applications and libraries. Nevertheless, keeping the operating system’s kernel up to date
will improve a system’s ability to undergo a hardware reconfiguration or migration.

Finally, manual system maintenance can be used at any time to manually update and upgrade any
application, library, service, or kernel. However, due to the amount of additional work required
when performing manual system maintenance related tasks its use is likely to be rather limited,
although it is always available if it serves as a more viable solution to an update.

4.4.2 Medium-term

As operating system update support is dropped in favour of supporting more recent versions of
the operating system, an upgrade will eventually be required to move up to the next level of
technology unless for some reason manual system maintenance is preferred. Upgrades, however,
are usually preferable to manually maintaining and supporting an operating system due to the
complexity involved. Thus, an upgrade is an operating system medium-term maintenance
solution. It can be expected that a deployed operating system will likely have to undergo an
upgrade from one operating system version to a newer one around every 5 years, unless extended
operating system update support is stipulated in the support contract with the vendor.

However, simply because update support has stopped may not be incentive enough to justify
upgrading, especially if large changes are entailed. Conversely, upgrading may be justifiable due
to new technical innovations by providing features such as a substantially newer kernel,
applications, services, and libraries. An older operating system can normally be upgraded with
only a few problems to be expected along the way. It is, however, probable that at least several
important applications may no longer work as expected due to application and/or library-based
changes. If this occurs, part of the upgrade can normally be rolled back and the missing files
recovered from backup. Then a new configuration environment can be created for the affected
applications and libraries. This may not always fix the problem, however, and sometimes the
only way to fix it is to track down the root cause(s) of the problem using the tools detailed in
Section 2.4.5.3. In the worst of cases, applications and/or libraries that do not work properly can
be recompiled and/or modified from source code; however, this can be time consuming and
complex to the uninitiated.

Therefore, unless there are valid reasons for not upgrading to a newer operating system version
when update support has been terminated, in-house laboratory testing should be conducted to
confirm that upgrading would result in a stable operating system. In addition, in-house testing
will confirm if the changes caused by an upgrade conform to organizational requirements and
policy (i.e. changes in operating system security policies).

Once the system and its applications have been deemed functional, the system can then be
updated using vendor provided updates. Once an upgrade is successful, subsequent updates can
then be applied to the system until the next major upgrade is available or necessary. It is likely
that updates for commercially supported operating systems will be available for as long as
another 5 years before the next major upgrade is required.

Therefore, upgrading is a medium to long-term system maintenance solution. Its caveat is that
upgrades eventually must themselves be superseded by a series of updates only to be followed by

DRDC Valcartier TN 2007-150 45

another upgrade. With time, through the successive implementation of updates and upgrades the
operating system may begin to show symptoms of software decay. Software decay occurs when
enough small changes have been made to a computer system where it no longer behaves as
expected due to the number of progressive modifications that have substantially altered the
system, its usability and reliability. This is generally caused by an excess of library
incompatibilities and inconsistencies that can no longer be easily managed through alternate
configuration environments. Although rare this can sometimes be caused by system call changes
in the kernel. This type of issue is almost never seen for updates designed for the original
operating system but can and may occur as time progresses and subsequent upgrades and updates
have been applied to the system. This may take as long as 15 or more years before coming into
full effect.

4.4.3 Long-term

The final type of maintenance to examine is manual system maintenance. This form of
maintenance is generally suitable for either long-term system maintenance (i.e. may occur after
10 to 15 years of continuous maintenance) or when one or more of several possible events has
occurred. The most likely events to occur are:

1) The distribution’s maintainer has gone out of business.

2) The maintainer has been bought out by another company that either does not
support or sell Linux-based products.

3) The maintainer no longer supports Linux as it has changed its line of business.

4) Alternatively, if an organization can no longer benefit from the use of successive
upgrades and updates as too of them has rendered key applications and libraries
non-functional.

On the hand, manual system maintenance may be required as a permanent solution after many
upgrades and updates as the time required to fix the problems caused by them is equal to or
greater than the amount of time necessary to manually maintain the system.

Manual system maintenance can be used at any time during an operating system’s lifecycle in
order to continue supporting and maintaining it and its applications and libraries; however, this is
not advisable as it only be used when necessary. It is almost never used after the initial
deployment of the C2 system as updates can generally fulfill its role. It is only after many years
and too many system changes that it should be seriously considered. However, this is not to say
that every software package must be manually recompiled and reinstalled. Rather, manual system
maintenance can be the manual and direct application of updates and upgrades without using any
GUI installation program. Instead, the system administrator becomes responsible for ensuring
that required software packages are up to date through whichever means are at his disposal.
Equally applicable is the implementation of new or modified source code, recompiling and
reinstalling it. In so doing, the system administrator gains additional control over which
applications and libraries are changed.

http://www.linux.org/
http://www.linux.org/

46 DRDC Valcartier TN 2007-150

What sets long-term manual system maintenance apart from the other types is that the system
maintenance is now almost entirely dependent on the system administrator, the method he
chooses (as the situation requires) and his skills and expertise in maintaining the system. In
addition, it is very likely that the system administrator will not be able to carryout all the required
tasks by himself and will have to work in with other technical support staff. However, in so long
as the applications and libraries in use continue to be supported by the vendor manual system
maintenance may only required occasionally. Fortunately manual system maintenance is only
necessary when applications and/or libraries are no longer functional due to various sources of
conflict.

Manual maintenance is unfortunately the longest and most complex form of system maintenance
possible and generally requires extensive in-house testing. Sometimes it will require the direct
modification of existing source code and at other times the application of patches or simple
downloads and installations. Cases will vary widely and many situations are likely to be unique
and equally cumbersome and complex to implement. Although long-term manual system
maintenance does not necessarily need to be used by the Navy so long as other maintenance
options remain open and available to it [2]. It is entirely possible that through highly specific
support contracts customized updates and upgrades can be provided from the vendor that will be
able to adequately satisfy the Navy’s long-term requirements. However, as is the case with
business things change and without at least giving this option due consideration the Navy may
find itself without any other viable option other than to deploy a completely new operating system
from scratch instead of building upon and reusing available resources.

4.5 Licensing

Software licensing can be a contentious issue and it can have a dramatic impact on which type of
long-term maintenance to use. Almost all FOSS-based software is distributed with a specific type
of software license. There are many different types of licenses and although many of them are
similar, each one grants specific rights and limitations to the end-user. Commonly the end-user is
considered the organization that is using or deploying the software in question. However, this
definition equally applies individuals using the same software at home.

It is common for software licensing to become a complicated and convoluted matter not just for
government departments but also for any involved party. The problem with software licenses is
that the language they employ is often subtle, vague, and all too often all encompassing.
Unfortunately, where software licenses are concerned there are often many subtle nuances that
have to be understood in order for the end-user to understand his rights and limitations. However,
licenses tend to grant few rights although they do generally contain many legal limitations.
Report [3] may serve as an interesting starting point for those interested in comparing two
different commercial licenses used for FOSS. In the report, a table has been provided to provide
a useful comparative examination.

However, FOSS licenses tend to be far less restrictive than their commercial counterparts are.
Commercial Linux distributions, while open source in nature, are generally bundled with
commercial licenses that are often more restrictive than most FOSS-based licenses. However,
these licenses tend not to be as confining as other non-FOSS commercial licenses.

http://www.linux.org/

DRDC Valcartier TN 2007-150 47

4.5.1 Types

An important question to ask before deploying any open source product is what type of license is
the software bundled under? There are currently more than 50 different types of open source
licenses, and while many are similar, they each have their own specific advantages and
drawbacks, rights and limitations. The two most commonly encountered are GPL or BSD-based.
Many of the other currently available licenses are derivations of these two types.

In a military setting where intellectual property (IP) is important it is advised that a BSD-based
license be used as it allows the end-user to preserve full rights to any changes he makes to the
source code. Conversely, GPL-based licenses generally require that all changes made to the
source code be given back to the community. Where matters of national security are concerned
this may not be in the best interest of Canada.

It is therefore important to understand the implication of the license type for the C2 system and
what types of maintenance can be performed on it. If maintenance is provided by the vendor [2]
then all legal responsibility rests with them, otherwise if maintenance is to be done in-house then
a legal analysis of the license should be considered before adopting it. Unfortunately, the
Canadian government has not yet reached a decision about how to treat open source licenses (this
is normally the jurisdiction of Justice Canada).

4.5.2 Compatibility

License compatibility issues are important but are often overlooked, whether for FOSS or
proprietary software. An important question to consider is ‘does the software license allow me to
make modifications to the operating system?’ In addition, as software changes over time so to do
the underlying licenses. It is common for FOSS software to change to another license type. This
gives rise to the following question: ‘how will changes in FOSS licenses affect subsequent
modification of that software?’ License changes occur in large part do to pressure from the
software’s users and developers, but sometimes it occurs if the software maintainer has a
philosophical “change of heart.” While this is very unlikely to occur for well-established FOSS
projects such as the Linux kernel, core system tools and utilities the possibility always exists.
License changes may also be necessary to ward off claims of intellectual property [19].

If system maintenance is to be required in the near future, it is important to determine if current
software licenses are the same of compatible with their newer counterparts. The answer will
depend on many factors the most important of which is the governing license that all other
software licenses fall under. For example, a commercially based distribution has a governing
license that states that its license supersedes all other underlying licenses. Thus, all changes to
the software and underlying licenses are the responsibility of the vendor, not the end user.
Therefore, if a software package changes its license to another type that is incompatible with the
current governing license it remains the vendor’s legal problem.

Conversely, those performing manual system maintenance and are no longer have a valid support
contract with the vendor fall outside the protective umbrella of the vendor’s governing software
license. Thus should underlying software licenses change from one type to another then legal
counsel should be sought out before proceeding to make any changes. All too often, changes to
FOSS licenses, although minor in nature, will allow the end user to continue working with and

http://www.gnu.org/licenses/
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.gnu.org/licenses/
http://www.linux.org/

48 DRDC Valcartier TN 2007-150

modifying the source code. However, in the event that the new license is incompatible with the
needs of the end user (i.e. divulging intellectual property) he can, at his discretion choose to
replace the software package for another type that satisfies his specific requirements. The other
alternative is to not adopt the newer software package with its incompatible license and manually
maintain the older software without using any source code from the newer software or from the
user community. For example, a FOSS package originally developed under the BSD license is
eventually re-licensed under the GPL license. This would severely affect new source code
modifications and require them to be distributed back to the community. The only way around it
either use and maintain the older source code or switch for another similar FOSS software
package.

4.5.3 Permissions and limitations

It is important to understand what is permitted under both a governing commercial software
license and the various packages’ underlying licenses. Each license grants a specific set of
permissions and limitations. Some licenses, commercial and open source, are very restrictive
while others are far more permissive. For example, GPL-based licenses are far more restrictive
than their BSD counterparts are. However, much will depend on what is specifically required of
the license and of the software, including any potential changes to be made to the source code,
both in the present and future. For example, if a software component’s license has changed and it
no longer reflects the needs of the organization it may be more appropriate to replace it with
another component whose license is more in line with the requirements of the organization. Thus,
the permissions and limitations sought after in a license should be closely reflected by the
organization’s requirements of the software and of the C2 system. It is also important to consider
that a governing licenses change over time and the rights and limitations given to the end user
also change as per updates and upgrades implemented against the various systems. Therefore,
accepting newer versions of software can have a direct impact on the type of maintenance to use
which can affect the C2 system’s long-term evolution.

4.5.4 For consideration

As with all legal issues, operating system and software licenses vary from case to and from
package to package and distribution to distribution. The vendor may simply apply a standard
generic license to the distribution thus covering all the underlying software with its license. Some
of the issues that have not yet been examined are as follows:

a. If the distribution is bundled using a standard commercial generic license, is manual
system maintenance permissible? If it is permissible, what are its limitations? If not,
then legal counsel should be sought out before attempting manual system maintenance.

b. Depending on the vendor’s commercial license it may be necessary to renew on a yearly
basis the software support contract simply to have the right to use the distribution, let
alone modify it [3].

c. Do the open source licenses found with the distribution allow for the modification of the
kernel, system configurations, applications and libraries? Generally, this is not an issue;
however, this may be problematic if source code and IP are integrated.

http://www.opensource.org/licenses/bsd-license.html
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.opensource.org/licenses/bsd-license.html

DRDC Valcartier TN 2007-150 49

d. Have any of the software packages’ licenses changed? If they have, are they compatible
with existing licenses and with both current and future modifications to source code?
What is the impact of these license changes?

e. Can the vendor’s distribution source code be patched or integrated with non-vendor
source code that has been provided by the open source community or third-party?

f. According to the governing license can specific packages be changed, modified, or
replaced? What do the licenses of the individual packages permit?

4.6 Laboratory testing

Before considering performing any type of system maintenance-related action on an operational
C2 computer system, whether it is an update, upgrade, or manual system maintenance, all actions
should first be thoroughly tested. Specifically, tests should be conducted within the confines of a
special laboratory environment where tests can be safely performed and evaluated without
jeopardizing the stability of the operational network. A laboratory is an exceptional setting for
testing patches, bug fixes, updates, upgrades, source code modifications, etc., before they are ever
rolled out and made operational. Laboratory testing provides an opportune time and location to
perform system reaccreditation and recertification in order to minimize the overall impact that
would otherwise be experienced in operational environments. Since the Navy has expressly
stated that all changes must be certified and tested, this setting provides a unique opportunity for
carrying out these necessities. Once a test system can be reaccredited and recertified in a
laboratory setting it can then be safely implemented (barring certain precautionary safeguards)
onto operational systems.

In addition, those interested in software degradation and operating system evolution will
appreciate the use of such facilities to study and examine how operating systems and their
software respond to many changes progressively made over the years. At the same time, some
may see laboratory testing as a waste of time, especially in testing small and seemingly innocuous
changes. Nevertheless, even small changes made progressively overtime build up and can cause
a “snowball effect” which can effectively cause seemingly functional systems to cease
functioning.

4.6.1 Laboratory

Before proceeding with any laboratory tests, it is important that the testing environment be as
similar as possible to the operational environment. The laboratory does not need to have the same
number of computers or users. However, the laboratory should utilize the same type of
telecommunication equipment used in the operational network such as routers, bridges, uplinks,
etc. The physical computer systems should be of the same make and model and those in the
operational network as software can respond differently when used on different systems. This is
in fact a well-known problem of computer system, particularly hardware dependent software such
as kernels and device drivers. In addition, when troubleshooting this will help to isolate software
related problems caused by incompatibilities and inconsistencies from hardware issues.
Furthermore, the operating systems, applications, services, etc. should be similarly configured as
the systems they are meant to represent on the operational network. It is very important that the

50 DRDC Valcartier TN 2007-150

systems be as similar as possible in order for laboratory testing to be meaningful and produce
useful results.

In addition, similar environments will help to “shake down” test systems and reveal software and
hardware bugs before they are encountered in the operational network. Furthermore, a laboratory
will help to provide a more realistic environment for system administrators, support staff, and
users to test and experiment with the various systems. This will help to determine if applications,
databases, files, telecommunication systems, and other various services are equally available,
responsive, and functional as they were before any system modifications were made. In the end,
all this testing will help to enable a faster and more simplified deployment and transition of the
required changes (i.e. updates, etc.) onto an operational setting.

4.6.2 Laboratory isolation

It is important before proceeding with any tests or modifications that the test environment (i.e.
laboratory) be completely isolated from any of the operational networks. Both networks need to
be free from any potential source of contamination that could be caused the other. If either
environment were interconnected it would make bug tracking and troubleshooting more
problematic. Even environments separated by NAT-based firewall systems cannot stop all
possible cross-contamination issues. Thus, when conducting tests on C2 systems and their
networks it is important to determine the sources of possible outside influence in order to track
down bugs or other issues. Furthermore, the extra layer of objectivity afforded by isolation will
make system reaccredidation and recertification longer and more complex as outside sources may
have to be taken into account.

4.6.3 Backing up

It most certainly is important to backup all data before proceeding with software testing in the
event changes must be rolled back. However, depending on the specifics of the test environment,
the software used and installed, backups may not always be necessary, although they are often a
good idea. In addition to preserving data backups will allow for the additional testing of new
backup technologies, methodologies, and emergency restoration procedures.

Data to be backed up will vary considerably and will be according to the type of data and test
systems to be backed up. A backup may consist of user data, applications, and configurations or
it could be a full system backup. However, the backing up multiple test systems may result in an
excessive work and may therefore be more appropriate to use cloning and distribution systems
(i.e. Norton Ghost) instead. This approach is particularly well suited to environments where all or
most of the systems are identical. More information on backing up can be found in Section 3.

4.6.4 Benchmarking

Before deploying any successful changes made to the C2 test systems onto the operational
network, it is important to consider the performance-based issues that can inadvertently affect
operating systems. One way to determine if a set of “successful” modifications will cause
inadvertent changes on the operational network is to test them in some way. The standard method

http://www.symantec.com/norton/products/overview.jsp?pcid=br&pvid=ghost12

DRDC Valcartier TN 2007-150 51

of testing consists of examining application and service-based functionality as well as usability
tests. Another method that is proposed herein is benchmarking.

Benchmarking is a performance-based test that measures the performance of the system,
application, or service against some measurable unit. The most commonly used unit is time,
although it any other useful performance-based unit is permissible. Benchmarking is useful
because it can help to pinpoint slowdowns caused by new software or a set of modifications. It
verifies if performance (could be the system as a whole or an application or service) is similar to
before implemented changes. By benchmarking the system when important modifications are
made to it various side effects, adverse or otherwise can be made known. Modifications can be
tested individually or in groupings of likeminded changes. Furthermore, it possible to benchmark
software according to changes in both the software itself and their configurations.

By benchmarking different modifications and attributing a performance-based score to pre- and
post-modification systems it is possible to determine with good accuracy whether a given change
or set of changes has been successful. A general rule of thumb is proposed: if the performance of
a system, application, etc., is closely similar to the original then the change(s) can be considered
successful. Conversely, noticeable slowdowns can be indicative of problems requiring resolution
or simply of an inadequate or incompatible change or set of changes having been made.

The theory behind benchmarking is that non-effectual or counterproductive changes and
modifications are more likely to cause system, application, and service slowdowns. Thus, if a set
of modifications actually causes an unexpected and significant slowdown where none was
previously seen then it is likely that those changes are either incorrectly set or are detrimental to
the system and should be reversed.

However, in order for benchmarks to be useful, a base score is required and this can only be
accomplished by benchmarking the original test systems C2 systems marked for deployment.
The system, as well as key applications and services should be benchmarked and serve as a
comparison for future benchmarks. In addition, benchmark results can vary widely due to
extraneous factors; thus benchmarks should be repeated several times in order to average out the
result. In so doing, benchmarking can help to objectively pinpoint potential performance gains
and problems that are the result of one or more modifications.

4.6.5 Incremental changes

It is important when testing systems in a laboratory that changes, wherever possible, be made
incrementally. This is not always practical or possible, however, to put into practice. When
testing various maintainer-provided updates and upgrades, depending on how they are to be
implemented, incremental implementation may not be possible although with tweaking it often is.
Certainly, this is easier to achieve when using manual system maintenance as compared to
maintainer-based updates and upgrades as these generally require an installation program that
does not always make it possible to make incrementally changes. However, most distributions
provide the ability to fine tune system and application updating; upgrading on the other hand is
often far more problematic. Nevertheless, this will vary considerably from distribution to
distribution and from version to version. At the same time, configuration files can also be
changed incrementally, making a set of changes and testing them before proceeding with another

52 DRDC Valcartier TN 2007-150

set of changes. These changes can be small or large and consist of one or more configuration
files.

Making changes incrementally is always a best practice; however, time does not often permit for
this. After each modification (or set of) it is appropriate to perform benchmarking tests and
comparisons. Incremental changes can allow for several goals can be attained:

1) It enables a more precise targeting and tracking of problems, instabilities, and
inconsistencies that arise because of changes and/or modifications.

2) Facilitates the rolling back of changes, as there is less to be removed and undone
as compared to a full system update or upgrade.

3) It makes version and system change control easier to track and maintain.

Unfortunately, during this process, much will depend on the distribution itself as different
operating systems use various approaches to applying updates and upgrades. In general, upgrades
tend to make incremental testing difficult and sometimes for all practical purposes infeasible.

4.6.6 System administration testing

It is obvious that the system administrator will know the various systems, infrastructures,
telecommunication equipment, and operating systems very well. It is his job to understand them
and to be comfortable with them. That is why, although obvious to state, that the system
administrator plays a key role in testing the system after changes have been made to it. The
system administrator above all others knows what to expect and how the system in general should
behave, including its performance, reliability, security configurations, and network-based access
and resources. Of course, user testing is also very important. Before user-based testing is done
system administration testing should take precedence. Only after the system administrator finds
the system to be functional should other tests be conducted on it. Different system administrators,
according to the skills and years of experience way use determine a system’s suitability for work
using different tools and techniques. While most vendor distributions provide similar UNIX-
based tools they can sometimes behave differently. Thorough documentation of system
administrator-based testing is as important to note as any other test. In addition, results from the
various tools including system metric information should also be included in any documentation.

4.6.7 Behaviour and functionality

Before accepting a set of modifications there are several issues that are very important to
consider. The most important of these is to notice if behavioural are a result of the modifications
made to it. Behavioural changes could be indicated by a change in screens or system messages
when the system boots up or powers down. There could also be various messages written to the
console that could be the result of one or more buggy device drivers. Applications and/or
services that were once fast and responsive are now slower or unresponsive (i.e. benchmarking).
Noticing behavioural changes often is not an easy task, but someone such as the system
administrator should be familiar enough with the current hardware and operating systems to

http://www.unix.org/

DRDC Valcartier TN 2007-150 53

recognize many types of differences. Many things can be changed after an update or upgrade and
this is why, when possible, changes should be made incrementally, tested, and observed.

The system administrator must determine if the functionality of the operating system is essentially
the same as it was before the change(s) were made. It is only normal that updates and upgrades
will change the kernel and other key operating system components, but these changes should not
adversely affect the system. However, the system administrator is uniquely qualified to
determine if aberrant behaviour or functionality is a results of changes made to the system.

However, the system administrator is not likely to recognize changes made to the various
applications used on the system(s) by the various users. Different users will use different
applications and services to start and complete their assigned work and tasks. Test users are
uniquely capable of determining whether applications and services are behaving and functioning
correctly. Test users should consist of advanced users who are fully capable of performing their
tasks with the least amount of system administrative support so that they can independently verify
if adverse changes are present.

Benchmarking can be used to help alert the system administrator to various problems by
attempting to determine how performance after a set of system modifications differs from the
baseline benchmark(s). It is also important to determine if there are any noticeable or adverse
changes or to the system after the implementation of specific software or configuration file
changes and/or modifications. Of course, aberrant system, application, or service behaviour is not
always caused by direct binary modification; sometimes it is caused by changes to configuration
files. Other times it is caused by a change to one or more library interdependencies or system call
changes.

4.6.8 User-related system changes

User-related system changes must be evaluated in order to determine whether any of the changes
made will cause system, application, or service-related disruption or failure. Any type of
disruption or failure could adversely affect the way users work and interact with both the system
and each other. This will in turn adversely affect both their day-to-day tasks and their overall
mission objectives, many of which have to be accomplished together as a team. In a mission
critical environment, any disruption could be potentially disastrous.

Therefore, it is very important to test the system after a set of changes, even if they are small.
Although the system administrator is generally able to distinguish adverse affects to the operating
system itself, only the users are uniquely positioned to test the system’s applications and services.
Of course, not every change is necessarily a bad; in fact, most of often changes are necessary so
to fix bugs and provide newer or enhanced features.

Laboratory-based testing in an isolated environment will make it easier to determine if the users
experience any differences in their day-to-day activities and use of the system before changes are
eventually deployed onto operational systems. This provides the users an opportunity to voice
themselves beforehand rather than be forced to accept non-functional or aberrant modifications or
changes to their applications and work methodologies. Thus, user-based impact studies are
necessary in order to assess the usability of the changes made. Some tests users should consist of
“power users,” users who are generally self-sufficient. System administrators in general make

54 DRDC Valcartier TN 2007-150

poor test users as they often bypass security or organizational procedures to accomplish their
task(s) or fail to understand how application-based changes will affect users.

User-based changes should be tested on a case-by-case and not all changes require test users.
Operating system changes that are sure not to affect applications and the users do not necessarily
require user testing (of course, the system administrator should test these changes).

4.6.9 Impact assessment

For every set of changes made to the system an impact assessment should be conducted; however,
the implementation of an impact assessment should be commensurate with the amount time
necessary to actually perform one as well as the time required to make the changes. For example,
if several very small changes are made and the consequence(s) of these changes are already well
known ahead of time then it may not be necessary to carryout an impact assessment. Judgement
and common sense should be utilized at all times; otherwise, the impact assessment portion of
testing could become excessively complex and cumbersome.

Before conducting any impact assessment two questions should be asked. The first is “will the
system(s) and network(s) continue to behave as they always have after the changes are made?”
The second question applies more specifically to system behaviour and is “if a set of changes
makes no visible changes to the system or the users’ ability to interact with it then it is worth
performing an impact assessment?”

Impact assessment-related issues are important to determine. Unfortunately, not all changes and
their impacts can be known or understood ahead of time; however, many are known as they are
already well documented and may even have been previously tested at a different time or place.
Nevertheless, impact assessment should be conducted from within a laboratory-based
environment. In addition, this laboratory is critical in order to adequately perform and test
patches, updates, upgrades, manual system maintenance and bug fixes in order to look for
potential incompatibilities, incoherencies, or new instabilities that could be introduced into the
operational environment or infrastructure. These issues can be caused by changing and/or
replacing key operating system libraries and interdependencies, applications, system and
application configurations as well as configurations. Furthermore, it is important to determine if
any of the changes break or modify system and organizational security policies. Impact
assessment testing should be used in conjunction with benchmarking and system administrator
and user-based testing.

4.6.10 Modifying system configurations

It is important to consider the impact of system configuration modifications. Some changes are
innocuous and are likely to result in no noticeable changes or behaviour to the system; others may
cause services and applications to act different from before. For example, the upgrade of an
important network service was configured via its configuration file to block certain types of
connections from external certain systems. Now that it has been upgraded and a new
configuration file has replaced the previous one these blockages are no longer in effect. This may
seem a minor detail (depending on what is affected) but this could potentially allow unauthorized
access to data or services that are ordinarily unavailable. In addition, the modification of system

DRDC Valcartier TN 2007-150 55

configurations can dramatically affect the users their interaction with the system. For example,
users connect using a network-based protocol but after a series of changes a service configuration
is modified and now compatibility mode for older clients is deactivated.

There are certain issues that should therefore be examined during the different testing phases after
an update or upgrade has been implemented. It is important to determine which files have been
changed, particularly configuration files. Changed configuration files should be compared to
their previous incarnations to determine if any important service or system-wide changes have
been made or propagated. This is another reason why it is also important to conduct backups
prior to implementing updates and/or upgrades. Furthermore, this is why documentation, change
assessment, and versioning control are important.

4.6.11 Outcome testing

It is important to determine if a set of changes made to the system results in a desirable outcome;
specifically, to determine whether the changes were successful or a failure. However, it is
important to define beforehand what should be considered a success and a failure. Failure could
be defined as the causality between a specific set of changes and a disruption of services or
applications, system stability, or reliability. It could also be defined as an unacceptable change in
system behaviour, performance, or application and/or service use. Only after a thorough
examination and stringent testing can the cause of a problem or failure, if it occurred, be
determined. Then, depending on its manageability it can deemed a success or failure. This,
however, generally requires testing on the parts of both the system administrator and test users.
Both have a complex job ahead of them; however, it is often more difficult for the users to
determine whether their applications and work methodologies continue to work appropriately.
This can include their ability to establish access and work with data and other repositories, system
services and applications, as well as accessing and using remote systems and devices (i.e.
printers, etc.). In addition, if things are not working as they should they must also determine
where they fall short.

On the other hand, if the changes and the overall impact on the system are considered acceptable
in that they have caused little to no discernable problems or disruptions then the outcome for the
changes can be considered a success. The case is further solidified if a set of changes imparts
additional benefits such as improvements in usability, performance, security, robustness, etc.,
without adversely affecting the system.

Outcome testing is not actual testing phase per se. Instead it is a culmination of results obtained
from benchmarking, impact analysis, user tests, system administration related tests, etc. All
successes and failures should be thoroughly documented as well as justification for an apparent
success or failure. It is to be expected after an update, but especially following an upgrade that
there will be some failures. However, in so long as they remain manageable then there is no need
to consider the entire update or upgrade a failure. Manageable failures can still be included in the
update or upgrade process while those that cannot be reasonably managed should either be
altogether left out or fixed, if possible, using manual system maintenance.

56 DRDC Valcartier TN 2007-150

4.6.12 Versioning and change control

Versioning control is rather simple to carryout in so long as the proper preparations have been
made (i.e. versioning control software has been installed). Many software packages are available
that can perform versioning control for various UNIX and Linux-based operating systems. This
software allows for the analysis and determination of which files have been changed, by whom,
and when; some can even go as far as comparing changes against archived copies. This
information is important in order to assess which process has made changes (i.e. update or
upgrade) and the nature of the change.

However, before versioning control can be implemented, a baseline must be established. Almost
all (if not all) versioning control software requires a baseline to be established. A baseline can be
used to establish information about a system’s files such as size, ownership, permissions, creation
date, access date, modification date, etc. It is generally possible to specify which files or sets of
files should be taken into account while creating the baseline (i.e. specific configuration files,
directories, binaries and libraries, etc). With this information it becomes possible to determine
which files have changed.

Versioning control information is generally stored in a database file; this file tends to text-based.
The baseline data file should always be considered as an important starting point for any
documentation that is to be written up. In addition, through thorough versioning control and
documentation it will be possible to maintain an established list of known changes that can be
used to help track down software and configuration errors as a troubleshooting aid.

4.6.13 Library and kernel modifications

Most updates and upgrades will affect multiple libraries as well as the kernel. Depending on the
type of system maintenance utilized, system changes may be minor or widespread. Generally,
library and kernel changes tend to provide additional functionality, improved security, and feature
and bug fixes. It is generally rare that required features such as API’s and system calls will be
removed, although it is always a possibility. When time and resources permit, it is always best to
ascertain the specifics to changes in these files. Using a versioning control system it will possible
to isolate changed files from unscathed ones with relative ease (assuming the files have been
baselined). While it is not often necessary to examine these files in-depth, if problems or other
issues should arise as a direct result of an update or upgrade, then the changed files will have to
be examined.

Changes to system calls are rather easy to determine if kernel source code is readily available,
otherwise specific tools will be required to extract this information. Libraries on the other hand
are generally more difficult and time-intensive to analyze, although there are tools directly
designed for this purpose. It may be appropriate to analyze libraries only if as a direct result of
their modification one or more applications or services malfunctions or fails. A full listing of
these tools is available in Section 2.4.5.3.

However, determining when if it is worthwhile to proceed with an analysis is of great importance,
as is the specific use of which tools to use, particularly if resources are scarce. Unfortunately,
large library-based changes (more common with upgrades than updates) is considerably more
difficult investigate thoroughly because of the far-reaching changes have been imparted. This is

http://www.unix.org/
http://www.linux.org/

DRDC Valcartier TN 2007-150 57

particularly true for critical libraries such as the libc library (C library) which provides most of
the operating system’s and applications’ C calls and functionality. Discovering which
applications and services would have been affected by a change to a core library is a cumbersome
and time consuming. Therefore, it is important to decide if and under which conditions this
analysis is to be conducted.

4.6.14 Reconfiguration and migration

Once all of the tests have been conducted and it has been determined that the overall outcome
thus far has been successful, then if appropriate, it is time to proceed with an operating system
hardware reconfiguration or hardware migration. This step should only be conducted if new
hardware has been introduced onto one or more of the test systems. For systems that have not
experienced a change in hardware then this step should be altogether skipped. In certain
circumstances where the kernel and/or libraries have not been changed a reconfiguration or
migration can still be done in so long as the kernel supports the newer hardware or that a third-
party device driver be available.

Unfortunately, due to the proliferation of many diverse incarnations of the Linux operating
system there is no generic approach to performing a reconfiguration or migration. Most modern
Linux distributions have their own particular method for detecting hardware changes and making
the appropriate operating system changes and configuration file changes. This topic has been
thoroughly examined in Report [1].

4.6.15 Documentation

The importance of documentation cannot be overstated. It is important that at least one
individual, preferably the system administrator (or other similar person) document information
about the various changes and tests carried out. Documentation should be written in a clear and
understandable language that is objective. The documentation should include but not be limited
to versioning and change control information, changes and other information relevant to library,
application, and system interdependencies. It is also important to include listings of changed files
and packages, configuration file modifications, as well as kernel and driver changes. Equally
important are the various tests that have been performed: impact and outcome, benchmarking,
behaviour testing, and system administrator and user-based tests.

The documentation should be able to convey to any technically qualified person all the required
and necessary information about the changes experienced by a system including the various
results obtained from benchmarking, behaviour and user-related tests, as well as performance
evaluations. The information collected for documentation purposes will be vital to system
reaccredidation and recertification as every system change, modification, and overall impact will
already have been conducted and detailed. Therefore, if the changes made by an update or
upgrade are successful and are thoroughly documented then deployment of approved changes will
be more seamless. Documentation will of course be a requirement in order to gain approval for
deploying a set of changes onto operational systems.

Documentation should also consist of problem resolution and other successful troubleshooting
techniques that managed to resolve problems caused by an update or upgrade. These problems

http://www.linux.org/
http://www.linux.org/

58 DRDC Valcartier TN 2007-150

are likely to occur again when the changes are deployed onto operational systems; thus, without
this information the process will be both more cumbersome and time consuming.

All results, whether good or bad, should be documented. A case should then be made and
available in the documentation detailing the reasons why an update or upgrade should be allowed
to proceed. An objective analysis of all tests, changes, and documentation will facilitate the
approval process. It is likely that many organizations will have their own procedures and policies
for writing technical documentation and approval must have been given be proceeding with any
deployment.

4.6.16 Approval process

At this point, once all tests have been appropriately conducted according to requirements, time
constraints, available testing resources, documented, and troubleshooted (if necessary) an overall
outcome should be apparent. Regardless if the outcome is positive or negative a case should be
made why a set of changes (i.e. update/upgrade) should or should not be deployed. Using the
objectively written documentation as well as overall assessment put together by technical
personnel management can make an informed decision about whether or not to proceed with a
deployment. The importance and quality of the documentation provided to management cannot
be overstated, as its decision will be largely based on the conclusions and findings found within
the documentation. Once approval has been given to deploy, a deployment plan should be
developed and a course of action for reaccredidation and recertification put into place.

4.7 Deployment

Once all required tests have been conducted, documented, and approved the update and/or
upgrade can be deployed onto operational systems and networks. However, there is much
planning that remains to be done in order to determine which systems the modifications are to be
deployed onto and the order of operation and priority. It will also be important to coordinate
deployment efforts with appropriate IT personnel so that they are available for deploying the
approved changes as well as troubleshooting if necessary. Other issues such as reaccreditation
and recertification are examined in this section.

4.7.1 Backing up

Prior to deploying an approved changes onto operational systems and networks full backups
should be conducted so that if necessary system states can be rolled back if one or more system
deployments should go amiss. Although the approved changes have been thoroughly tested in a
controlled laboratory environment the possibility exists that some type of failure could occur
during the deployment. Such a failure could result in network-wide disruptions potentially
leading to the entire unavailability of services and capabilities. Therefore, by backing up any
system that may be affected by the deployment it will be possible to restore them to their original
state. A backup and restoration methodology can be found in Section 3 of this report.

DRDC Valcartier TN 2007-150 59

4.7.2 Deployment plan

It is important to develop a deployment plan. The plan will examine many issues that must be
resolved in order to appropriately plan and deploy the various updates and/or upgrades. Not
doing so leaves many complex variables to chance and can considerably increase the probability
that a deployment effort will go amiss. A non-exhaustive list of potentially contentious issues to
consider has been provided below:

a. How many systems will the update, upgrade or manual system maintenance are
deployed? Is the deployment to be broken into small or large groups or done across
many systems simultaneously?

b. Are there enough available resources to proceed with the deployment?

c. Does the organization have a policy in place for deployments? Does the proposed
deployment coincide with existing policy or other frameworks?

d. What will be the effects on the other systems that will not be directly involved in the
deployment and will not receive a given set of modifications? This should have been
tested in a lab setting, documented, and approved.

e. Will the operational network or infrastructure be destabilized by the deployment? This
issue should have been tested in a lab. It may be necessary to temporarily disconnect the
network so not affect other systems, networks, and services.

f. Will the deployment be performed during time allotted for routine system maintenance
(weekends, holidays, etc.)?

g. Will deployments be done one system at time, in groups, or all at the same time? Each
option will require its own specific planning.

h. How will deployments be done? Will update or upgrade-based deployments be done in
part, starting with the kernel, then libraries, services, and finishing with applications to
minimize user downtime and impact? Alternatively, will the deployments be done by
implementing the complete update and/or upgrade at the same time? These scenarios
should have been tested in a lab setting.

i. Can users continue to work during the deployment? Will they be able to access their data
and applications and perform their routine tasks? This should have been tested in a lab
setting with the test users.

Once the deployment plan has been developed, it should be approved by both management and
reaccredidation and recertification officials. The modifications as laid out in the deployment plan
are made in the following section.

60 DRDC Valcartier TN 2007-150

4.7.3 Rollout

The deployment should proceed according to the deployment plan. The deployment plan should
be developed in terms resource availability as well as organizational policy and procedure. It is
here that the actual modifications to operational systems are made.

Due to extensive laboratory testing, few unknown problems and other issues should be
encountered during the operational deployment although the possibility of this occurring exists.
This is because laboratory testing cannot take everything into account that is to be found in
operational settings. It is conceivable that a deployment could have interacted in unforeseen ways
with the operational network. These inevitabilities cannot be taken into as they tend to be random
in nature and can potentially caused by many difficult to pinpoint sources of origin (i.e. electrical
short-circuit, cosmic rays, solar flare, etc.).

Regardless of the potential for failure (which should be relatively low), the deployment should
follow as closely as possible the development plan put together in the previous section. The
rollout phase should be documented just as has been done for all of the previous steps because
should failure(s) occur then using well-written documentation it may be possible to track the root
cause of the problem or failure.

4.7.4 Reconfiguration and migration

As stated in Section 4.6.14, a reconfiguration or migration is necessary only if hardware changes
have been made to one or more of the underlying systems present on the operational network or
infrastructure. If no hardware changes have been made then neither a reconfiguration nor
migration is necessary. However, if changes have been made then in order for that new hardware
to function correctly the operating system will have to recognize it. However, each distribution is
unique and each operating system will have its own mechanism for detecting hardware changes
and make them available to the operating system. It is beyond the scope of this report to directly
examine or detail the specifics concerning reconfiguration and migration; more information can
be found in Report [1].

4.7.5 Reaccredidation and recertification

If all the previous steps have been appropriately completed and the changes have been deemed
successful, the documentation is objective, accurate, up to date, and provides extensive coverage
of events and testing then reaccredidation and recertification should be a rapid process. While the
process varies according to organizational policy, the ultimate goal of the process is to determine
what has changed and what its impact will be on the system and network. By performing all of
the aforementioned steps, these time-consuming verifications are taken out of the loop of IT
security personnel and left in the hands of those better able to determine the cause and effect
implications of the various system changes that have been made. In addition, once all appropriate
evidence has been collected and corroborated from previous steps there should be a high degree
of certainty about overall system reliability and stability. The systems should then be deemed
judged satisfactory for operational use and given final approval by reaccredidation and
recertification officials.

DRDC Valcartier TN 2007-150 61

4.7.6 Wrap-up

Once the deployment has been successfully completed, reaccredited and recertified it will require
a “shakedown” period where hidden bugs not found during laboratory testing or deployment can
be worked out. A successful shakedown could take several weeks to several months to complete
and to learn about any new undocumented features about the changes implemented. During this
time, it is important to document any lessons learned (if any) and examine any last minute
changes, tweaks, or modifications that have to be made to accommodate for the effectuated
modifications and changes.

62 DRDC Valcartier TN 2007-150

5. Conclusion

There is no clear-cut or definitive methodology for carrying out system backups or performing
system maintenance. The purpose of this Technical Note has been to propose two methodologies
to aid system administrators in these tasks. Different operating systems will require different
methodologies. However, because the Navy is interested in deploying Linux-based systems as
their new C2 systems aboard the retrofitted Halifax-class frigates only Linux has been examined.
The material presented herein is applicable, in general, to both Linux and UNIX-based operating
systems.

The first methodology, found in Section 3 examines the various techniques and technical issues
surrounding performing quality system backups before testing and deployment of system
maintenance. Different maintenance types and their consequences have been examined in
Section 4. Here, a system maintenance methodology has been developed to aid in the testing and
deployment of various types of system maintenance.

The Navy has expressed their interest in maintaining the same operating system throughout the
lifecycle of the C2 system. As such, they will inevitably have to perform maintenance on these
operating systems, and when they do, the issues examined herein will be of great use to both their
system administrators and other technical personnel whose job it is to provide support and
maintenance. Many may not agree with the contents herein, however, this is quite likely the first
document of its kind as no other system maintenance methodology could be found for Linux or
UNIX in general.

In conclusion, although Linux distributions vary greatly according to their market niches, they all
share certain features and similarities. It is based on these similarities and features that the
methodologies proposed in sections 3 and 4 have been proposed. Of course, they are open to
interpretation and can be changed to suit different requirements and environments, but at their
basis, they offer relevant and useful tips and advice. Section 2 provides useful background
information concerning system maintenance, operating systems, and the various types of
dependencies likely to be encountered.

http://www.linux.org/
http://www.unix.org/
http://www.linux.org/
http://www.unix.org/
http://www.linux.org/

DRDC Valcartier TN 2007-150 63

References

[1] Carbone, Richard. Operating system hardware reconfiguration: A case study for Linux.
Technical Memorandum. Defence R&D Canada. TM 2006-595. November 2006.
http://cradpdf.drdc.gc.ca/PDFS/unc56/p527008.pdf.

[2] Charpentier, Robert, and Carbone, Richard. Life-Cycle Support for Information Systems
Based on Free and Open Source Software. Revision 1.0. Technical Paper for 11th ICCRTS.
Defence R&D Canada. June 2006. http://www.dodccrp.org/11th_ICCRTS/abstracts/136.pdf.

[3] Carbone, Richard. Enterprise Linux licenses: A comparison of licenses between Red Hat and
Suse Enterprise Linux. Technical Note. Defence R&D Canada. TN 2006-573. October
2006. http://cradpdf.drdc.gc.ca/PDFS/unc53/p526349.pdf.

[4] Wikipedia. System call. Online encyclopaedia. Wikimedia Foundation Inc. October 2006.
http://en.wikipedia.org/wiki/System_call.

[5] Carbone, Richard. Does Red Hat 5.0 Support Hardware Refreshes and can it Work on
Modern x86 CPU’s. Internal Report. Defence R&D Canada. November 2005.

[6] Carbone, Richard. Can Linux be Easily Reconfigured from One Machine to the Next?”
Internal Report. Defence R&D Canada. October 2005.

[7] Carbone, Richard. A What to do Avoid Guide in Doing your own In-House Migration.
Internal Report. Defence R&D Canada. November 2005.

[8] Michaud, Frederic, and Carbone, Richard. Practical verification and safeguard tools for
C/C++. Technical Memorandum. Defence R&D Canada. Document No. TR 2006-735.

[9] Painchaud, Frederic and Carbone, Richard. Java software verification tools: Evaluation and
recommended methodology. Technical Memorandum. Defence R&D Canada. Document
No. TM 2005-226. March 2006. http://cradpdf.drdc.gc.ca/PDFS/unc57/p527369.pdf.

[10] Weimer, Hendrik. Dissecting Programs. Online article. OS Reviews. September 2006.
http://www.osreviews.net/reviews/admin/strace.

[11] Ravi. strace – A very powerful troubleshooting tool for all Linux users. Online article.
All about Linux. May 2006. http://linuxhelp.blogspot.com/2006/05/strace-very-powerful-
troubleshooting.html.

[12] Cespedes, Juan. Ltrace Linux man page. Man page. Die.net.
http://www.die.net/doc/linux/man/man1/ltrace.1.html.

[13] Maurer, Ben. Memory usage with Smaps. Online article. Ben Maurer. March 2006.
http://bmaurer.blogspot.com/2006/03/memory-usage-with-smaps.html.

http://cradpdf.drdc.gc.ca/PDFS/unc56/p527008.pdf
http://www.dodccrp.org/11th_ICCRTS/abstracts/136.pdf
http://cradpdf.drdc.gc.ca/PDFS/unc53/p526349.pdf
http://en.wikipedia.org/wiki/System_call
http://cradpdf.drdc.gc.ca/PDFS/unc57/p527369.pdf
http://www.osreviews.net/reviews/admin/strace
http://linuxhelp.blogspot.com/2006/05/strace-very-powerful-troubleshooting.html
http://linuxhelp.blogspot.com/2006/05/strace-very-powerful-troubleshooting.html
http://www.die.net/doc/linux/man/man1/ltrace.1.html
http://bmaurer.blogspot.com/2006/03/memory-usage-with-smaps.html

64 DRDC Valcartier TN 2007-150

[14] Nguyen, Binh. Linux Filesystem Hierachry. Revision 0.65. Howto guide. The Linux
Documentation Project. July 2004. http://tldp.org/LDP/Linux-Filesystem-
Hierarchy/html/proc.html.

[15] Burford, Sean. Introduction to Reverse Engineering Software in Linux. Revision 1.26.
Howto guide. University of Adelaide. September 2002.
http://www.ouah.org/RevEng/t1.htm.

[16] Die.net. ldd man page. Man page. Die.net.
http://www.computerhope.com/unix/uldd.htm.

[17] Free Software Foundation. GNU Binary Utilities. Guide. Free Software Foundation.
May 2002. http://www.gnu.org/software/binutils/manual/html_mono/binutils.html.

[18] Abell, Victor A. Lsof man page. Revision 4.63. Man page. NetAdminTools.com.
http://www.netadmintools.com/html/lsof.man.html.

[19] McDougall, Paul. Microsoft Claims Linux Infringes 42 Patents. Online article.
Information Week. May 2007.
http://www.informationweek.com/news/showArticle.jhtml?articleID=199501578.

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://www.ouah.org/RevEng/t1.htm
http://www.computerhope.com/unix/uldd.htm
http://www.gnu.org/software/binutils/manual/html_mono/binutils.html
http://www.netadmintools.com/html/lsof.man.html
http://www.informationweek.com/news/showArticle.jhtml?articleID=199501578

DRDC Valcartier TN 2007-150 65

List of symbols/abbreviations/acronyms/initialisms

ACL Access Control List
API Application Programming Interface
BSD Berkeley Software Distribution
C2 Command and Control
CD Compact Disc
CRC Cyclic Redundancy Check
DD Data Definition
DMSS Directorate of Maritime Ship Support
DRDC Defence Research Development Canada
DVD Digital Video Disc
Ext2/Ext3 Second Extended Filesystem / Third Extended Filesystem
FOSS Free and Open Source Software
FSCK Filesystem Check / File System Consistency Checker
GNU GNU Not UNIX
GPG GNU Privacy Guard
GUI Graphical User Interface
HMCCS Halifax Modernized Command Control System
I/O Input/Output
IDE Integrated Device Electronics
IT Information Technology
NAT Network Address Translation
PKI Public Key Infrastructure
R&D Research & Development
RAM Random Access Memory
RHEL Red Hat Enterprise Linux
RSH Remote Shell
SCSI Small Computer System Interface
SSH Secure Shell
Tar Tape Archiver
U.S. United States

66 DRDC Valcartier TN 2007-150

This page intentionally left blank.

DRDC Valcartier TN 2007-150 67

Distribution list

Document No.: DRDC Valcartier TN 2007-150

LIST PART 1: Internal Distribution by Centre:

3 Document Library
1 Richard Carbone (author)
1 Robert Charpentier
1 Michel Lizotte
1 Guy Turcotte
1 Mario Couture

8 TOTAL LIST PART 1

LIST PART 2: External Distribution by DRDKIM

 DRDC Corporate HQ

1 LCol Peter Scott (DSTC4ISR 3)
1 Donna Wood (DSTC4ISR 4)
1 Directorate R & D – Knowledge and Information Management

 NDHQ (101 Colonel By, Ottawa, K1A 0K2)

1 Directorate of Maritime Support Systems
Attn: Mr. Norbert Haché

1 Directorate Information Management Strategic Planning 3
Attn: Maj. J.Perry Mellway

1 Directorate Information Management Strategic Planning 2-2
Attn: Maj. P.C. Kvas

1 Directorate of Aerospace Engineering Support 5
Attn: Sylvain Fleurant

1 Directorate Information Management Requirements 4-6
Attn: Mark Daniels

1 Directorate Distributed Computing Engineering and Integration 3-5
Attn: Capt. Karine Pellerin

1 Directorate Information Management Security 2-3-2-2
Attn: Paul Lamoureux

10 TOTAL LIST PART 2

18 TOTAL COPIES REQUIRED

68 DRDC Valcartier TN 2007-150

This page intentionally left blank.

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

DRDC Valcartier

 2. SECURITY CLASSIFICATION
 (Overall security classification of the document

including special warning terms if applicable.)

Unclassified

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C, R or U)
in parentheses after the title.)

(U) Long-term operating system maintenance: A Linux case study

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, R.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

January 2008

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

67

 6b. NO. OF REFS
(Total cited in document.)

19

 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Note

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

DMSS HMCCS

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research

and development project or grant number under which the document was
written. Please specify whether project or grant.)

1430JT 15AV34

 9b. CONTRACT NO. (If appropriate, the applicable number under which
the document was written.)

 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating activity.
This number must be unique to this document.)

DRDC Valcartier TN 2007-150

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience
may be selected.))

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

In Operating system hardware reconfiguration: A case study for Linux, it was determined
through experimentation that a Linux-based C2 operating system can successfully undergo a
hardware migration and operating system hardware reconfiguration. The direct benefit of this is
the ability to forgo any new operating system reinstallation in order to support newer hardware
by using mechanisms internal to the operating system that support changes in hardware; this
results in a decreased waiting time for system reaccredidation and redeployment. Since an
operating system can evolve over time, it can accommodate changes in the system’s hardware,
thus presenting a tangible advantage for the Navy as this allows the operating system to be
maintained over the long-term. However, there are complexities involved when maintaining an
operating system for long periods. Therefore, this report serves as an introduction and a simple
methodology for performing system maintenance-related tasks that include upgrading, updating,
as well as data backups and restoration. This report is neither all-inclusive nor a replacement
for qualified system administrators with years of experience. Instead, it can be used as a useful
source of information to provide recommended practices, procedures, and information to help in
planning for long-term system maintenance.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing
terms which are Unclassified, the classification of each should be indicated as with the title.)

free and open source
FOSS
hardware migration
hardware reconfiguration
kernel
Linux
migration
operating system
operating system hardware reconfiguration
operating system reconfiguration
patching
reconfiguration
system administration
system maintenance
upgrade
update

Canada’s Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

WWW.drdc-rddc.gc.ca

Defence R&D Canada R & D pour la défense Canada

